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Jitter-type spike resampling methods are routinely applied in neurophys-
iology for detecting temporal structure in spike trains (point processes).
Several variations have been proposed. The concern has been raised,
based on numerical experiments involving Poisson spike processes, that
such procedures can be conservative. We study the issue and find it can
be resolved by reemphasizing the distinction between spike-centered
(basic) jitter and interval jitter. Focusing on spiking processes with no
temporal structure, interval jitter generates an exact hypothesis test, guar-
anteeing valid conclusions. In contrast, such a guarantee is not available
for spike-centered jitter. We construct explicit examples in which spike-
centered jitter hallucinates temporal structure, in the sense of exagger-
ated false-positive rates. Finally, we illustrate numerically that Poisson
approximations to jitter computations, while computationally efficient,
can also result in inaccurate hypothesis tests. We highlight the value of
classical statistical frameworks for guiding the design and interpretation
of spike resampling methods.

1 Introduction

Jitter procedures have been developed to detect and quantify the presence
of fine temporal structure in point processes (see Amarasingham, Harri-
son, Hatsopoulos, & Geman, 2012, for an overview) and have been applied
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extensively to analyze spike trains (see Amarasingham, Geman, & Harri-
son, 2015, for broader motivation). Loosely, the idea is to locally “jitter” the
locations of observed spikes to generate surrogate data sets and then to ask
whether the original spike train data set can be distinguished from the jitter
surrogates. The amount of jitter specifies a hypothesized timescale of tem-
poral structure. There are many variations in theme and terminology—for
example: basic jitter in Amarasingham et al. (2012), dithering in Gerstein
(2004), Griin (2009), and Louis, Gerstein, Griin, and Diesmann (2010); tee-
tering in Shmiel et al. (2006); the convolution method in Stark and Abeles
(2009); interval jitter in Amarasingham et al. (2012) and Date, Bienenstock,
and Geman (1998); pattern jitter in Harrison and Geman (2009) and Ama-
rasingham et al. (2012); and tilted jitter in Amarasingham et al. (2012).

This basic idea is intuitively compelling in neurophysiology. The point
of this letter is to emphasize that subtleties arise in translating this intu-
ition into data-analytic procedures. We provide several constructive exam-
ples, based on the classical theory of statistical hypothesis testing, to make
this point. The examples are deliberately simple, involving either single or
paired spike trains, but the issues they raise are amplified in large-scale
settings and confirm previous cautions about heuristic methods (Amaras-
ingham et al., 2012).

In the first example, we discuss a concern raised by a numerical exper-
iment of Stark and Abeles (2009). In essence, the concern is that a jitter
procedure applied to analyze synchrony in a pair of independent, homo-
geneous Poisson processes is conservative (“biased,” in the terminology
of Stark & Abeles, 2009). We review the distinction between spike-centered
(basic) jitter procedures and interval jitter procedures (Amarasinghametal.,
2012). In spike-centered jitter, jitter surrogates are formed by jittering spikes
within an interval centered at their location in the original spike train; in
interval jitter, surrogates are formed by jittering spikes in intervals that are
chosen independently of the original spike train (see Figure 1). Interval jitter
is derived from an exact test of a null hypothesis that contains homogeneous
Poisson processes (Amarasingham et al., 2012), whereas spike-centered jit-
ter is not. We conclude that this accounts for the concern that motivates
Stark and Abeles (2009).

A source of intuition is the following. Intuitively, resampling can be un-
derstood here as a way of removing structure from the data. Differences
between the resamples and the observed trains thus provide statistical
evidence for structure. However, the original spike trains can be exactly
reconstructed from a sufficiently large ensemble of spike-centered jitter
surrogates. The same does not hold for interval jitter surrogates. This ob-
servation makes clear that spike-centered jitter does not actually remove
temporal structure and provides one informal way to distinguish the two
procedures.

Motivated in part by the above observations, we then seek more extreme
examples of the discrepancy between spike-centered and interval jitter. We
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Figure 1: Two prototypical spike resampling methods. In spike-centered (ba-
sic) jitter (blue), each spike is resampled in an interval centered at its original
location (black). In interval jitter (red), each spike is resampled in an interval
whose location is specified independent of the original spike train. The thick
colored lines represent the surrogate spike trains, whereas the thin colored lines
represent the potential locations of a resampled spike. For illustration purposes,
only two surrogate trains are shown for each jitter type. The actual computation
involves many surrogates.

focus on examples of spike processes that unambiguously contain no tem-
poral structure. In such a setting, interval jitter procedures are guaranteed
to function properly, regardless of the choice of test statistic. In contrast, we
construct test statistics and unstructured spike processes for which spike-
centered jitter generates more exaggerated examples of conservatism. More
striking, we construct examples in which spike-centered jitter even hallu-
cinates temporal structure in the sense of exaggerated false-positive rates.
The effect of the hallucination can be arbitrarily large.
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As a third class of example, we show that the natural, and computation-
ally compelling, idea of approximating a jitter technique with a Poisson
approximation (Abeles & Gat, 2001) can also have practical consequences.
The latter is shown with a demonstration of conservative as well as invalid
procedures in a numerical example involving an analytical version of an
interval jitter experiment.

2 Spike-Centered Jitter Can Be Conservative with Structureless Spike
Processes

The problem that Stark and Abeles (2009) examined can be summarized
by describing a numerical experiment as follows. Generate two indepen-
dent, homogeneous Poisson spike trains with identical rates 1. We rep-
resent a spike train as a list of spike times. For example, denote t; =
(b gstips-ees tLN1 ) as the first spike train, and denote t, = (¢, ;, trpsenns tquZ)
as the second spike train (f; ; is the jth spike time in spike train i, and N;
is the number of spikes in the spike train 7). (A glossary of mathematical
terms is provided at the end of the letter.) Then the Monte Carlo-resampled
train t{* is generated from the assignment tff j =t jt € jp Wheree ; isa
random variable uniformly distributed on the interval [-A/2, A/2], and
all ¢ ;; terms are drawn independently. (Alternatively, when spike times
are discretized, €i ik is distributed uniformly on {—A/2, —A +1,..., A/2}.)
Following Amarasingham et al. (2012), we will refer to this resampling tech-
nique as spike-centered, or basic, jitter (“dithering” in Griin, 2009; “teeter-
ing” in Shmiel et al., 2006; “artificial jitter” in Rokem et al., 2006; “jittering”
in Stark & Abeles, 2009). The intuition, which turns out to be incorrect,
is that the resamples and the original data should be indistinguishable
because a homogeneous Poisson spike train has no temporal structure.
To quantify indistinguishability, choose a statistic f(s;,s,) that converts
a spike train pair (s, s,) into a number and compute S, = f(t,, t,), and
S, = ft, t;k)) fork € {1,2, ..., K}. For shorthand, we use X = (¢,, t,) and
R = (til), t;l), e tiK), t;K)), so that X represents the data and R the Monte
Carlo resamples. Then compute

1+ Y5, 1{S; = Sy}
K+1 ’

p(X,R) = (2.1)

where 1 represents the indicator function, so that 1 {S; > S} takes the value
1if S; > S, and 0 otherwise.

Thus, p(X, R) measures, in some sense, how unusual the original data are
with respect to the surrogate spike trains, in terms of the statistic f(s;, s,).
Can p(X, R) be interpreted as a p-value for a statistical hypothesis of “no
temporal structure”?



Spike-Centered Jitter Can Mistake Temporal Structure 787

For example, taking f(t,, t,) to be synchrony, with synchrony width g,

N, N

fltty) =Y Wit —t, ;| <8}, 2.2)

i=1 j=1

and implementing the experiment numerically, we find that the empirical
distribution of p(X, R) does not look uniform (see Figure 2A). This is, in
essence, the motivating observation of Stark and Abeles (2009). A standard
property of exact p-values that are absolutely continuous is that they are uni-
formly distributed. Thus, the discreteness of the test statistic S, = f (s, s,)
could be the underlying source of the nonuniformity. However, the same
phenomenon occurs when we impose absolute continuity by further ran-
domizing the number 5. That is, let S| = S, + §,, where 8y, 6, ..., 8y are
independently drawn and uniformly distributed on [-1/2, 1/2], and define

1+Y5,1 {S; = Sy}

Pe(X.R) = K+1

(2.3)

p.(X, R) is absolutely continuous. Nevertheless, it is evidently nonuniform
(see Figure 2C). Therefore p.(X, R) cannot be a p-value for any null hypoth-
esis (H,) that includes independent Poisson spike trains.

One way to get a proper hypothesis test is to use interval jitter in place
of basic jitter (see Amarasingham et al., 2012, for a complete treatment). To
summarize, the interval jitter null hypothesis associated with parameter A
is as follows (Date et al., 1998; Amarasingham et al., 2012). Partition the time
interval into disjoint subintervals of length A. Let the sequence C, (t,, t,)
represent the counts in the subintervals. (We conceptualize C, (t,,%,) as a
A—coarsening of spike trains ¢; and #,.) The null hypothesis is that the
conditional distribution of t; and t,, conditioned on C, (t,, t,), is uniform
(see section A.1 and Amarasingham et al., 2012, for a detailed review of the
concept of conditional uniformity).

To generate surrogates, instead of the assignment l.(f‘j) =t i(_l;) +€; jx above,
use

tzf"]) = Al /Al + € 4y (2.4)

where |x] denotes the floor of x (round down) and €] ik are uniformly dis-
tributed on [0, A] and drawn independently. With these surrogates, p(X, R)
and p,(X, R) are (both) now proper p-values for the interval jitter null hy-
pothesis. (The reasoning is reviewed in section A.2; see Amarasingham
et al., 2012, for explicit statements and demonstrations.) To illustrate one
implication of this, we repeat the same numerical experiment with interval
jitter: p.(X, R) indeed appears uniformly distributed (see Figure 2D). This is
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Figure 2: A numerical demonstration of the distribution of p(X, R) (see equa-
tion 2.1) and p (X, R) (see equation 2.3), generated by both the spike-jittered
and interval jitter procedures. Data are taken from pairs of homogeneous
(20 spikes/s) Poisson-generated artificial spike trains, and synchrony is used
as a test statistic. Details of the experiment are described in the text. Here
8 =30 ms, K =500, A =20 ms, and trial lengths are 1 s. Each trial provides
a single value of p(X, R) (resp., p.(X, R)). Fifty thousand trials were gener-
ated to produce 50,000 such values. The histograms were computed using a
0.01 bin width. (A, C) The respective distributions, using the spike-centered
jitter procedure. The horizontal dashed line in all panels represents the the-
oretical limit (as the number of samples/trials goes to oo) if the distribution
is truly uniform. (B, D) The respective distributions, using the interval jitter
procedure. In all panels, the inset represents the respective cumulative distri-
bution, Pr(p(X, R) < «) or Pr(p.(X, R) < «) (as appropriate). Note that the test
is invalid for sufficiently large « with spike-centered jitter. Code is available at
https://github.com/aamarasingham /bjitter.

a corollary of the theory, as independent homogeneous Poisson spike trains
are in the null hypothesis for interval jitter, for any A (Amarasingham etal.,
2012). Independent homogeneous Poisson spike trains are indeed condi-
tionally uniform, conditioned on C, (¢,, t,), for any A. Another implication
is that the interval jitter procedure has greater sensitivity toward detecting
“nonaccidental” synchronous events, when they are present (see section A.3
in the appendix).

This provides a theoretical account of the observation motivating Stark
and Abeles (2009).
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3 Spike-Centered Jitter Can Make Mistakes with Structureless Spike
Processes

The key general requirement of a p-value is not uniformity; rather the
typical implication of hypothesis testing is that, under a null hypothesis H,
the p-value is subuniform (Casella & Berger, 2001), meaning that

Pr(p <) <a, foralla > 0. (3.1)

In some sense, subuniformity of p-values is a necessary and sufficient con-
dition for hypothesis testing of H,,. (A technical explanation of this equiva-
lence is provided in section A.4 in the appendix.) In contrast, uniformity is a
stronger requirement that, under H,, a p-value p satisfies Pr(p < ) = o for
all a. The difference is that the hypothesis tests associated with subuniform
p-values are valid but conservative, whereas the tests associated with uni-
form p-values are valid and nonconservative. For these reasons, our opinion
is that conservatism, while certainly sensible to avoid when possible, is a
lesser concern and not particularly dangerous, if it is properly interpreted
(see section 5). As a familiar example of conservatism, any discrete-level «
test is conservative for most values of .

On the other hand, misconstruing a statistic as a p-value in such a way
that, under the null hypothesis of no temporal structure, rejection of the null
occurs more often than one expects by chance, will lead to substantially
misleading conclusions (i.e., an excess of false positives). This is exactly
what happens when random variables that are not subuniform are treated
as p-values. That is, we are concerned about the situation in which we treat
p(X, R) as a p-value despite the fact of examples, which clearly belong in
H,, for which Pr(p(X, R) < «) = ko, with « > 1. The higher the value of
«, the greater the concern; thus, the ratio « (o) = Pr(p(X,R) < a)/a can be
viewed as a kind of hallucination factor. (Henceforth, we will write « ()
simply as «, bearing in mind that ¥ depends on «.) Such a decision-making
procedure is invalid as a hypothesis test (Stark & Abeles, 2009, refers to the
case k > 1 as permissive).

For example, consider a pair of spike processes such that the spike trains
are conditionally uniform and independent, conditioned on (N, N,), for
each neuron (see section A.1 for definitions of conditional uniformity in
specific settings). Regardless of the many subtleties involved in constructing
a quantitative definition of temporal structure for a point process (spike
train), it is sufficient here to work with the conditionally uniform example
because it is a prototypical example of a point process with no temporal
structure. Because such a process is in the interval jitter null hypothesis
(Amarasingham et al., 2012) for any A, p-values from interval jitter are
guaranteed to be subuniform and the tests are guaranteed to be valid.
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Furthermore, if the p-value p(X, R) is (absolutely) continuous, then interval
jitter p-values are guaranteed to be uniform.

Interval and basicjitter are intuitively similar procedures. To what degree
is it appropriate to suppose that properties of interval jitter, such as sub-
uniformity with respect to conditionally uniform processes, approximately
extend to basic jitter? Previously, Amarasingham et al. (2012) emphasized
that the basic jitter procedure did not have a clearly defined null hypoth-
esis, cautioning against its unaccompanied use. One aspect of this is that
the mathematical logic that justifies interval jitter does not necessarily ap-
ply when basic jitter is used to generate surrogates (see section A.2 and
Amarasingham, Harrison, Hatsopoulos, & Geman, 2011, for more details).

Continuing to focus on conditionally uniform processes, we sought a
more refined look at this question. We examined the implications of using
spike-centered jitter surrogates to calculate equation 2.1, and then inter-
preting the result as a p-value. We find that it is possible for the resulting
decision procedure to be conservative (¢ < 1) or invalid (« > 1). The latter
case (k > 1) conclusively establishes that the spike-centered jitter procedure
cannot be justified in general; loosely, we refer to this as hallucination of
temporal structure. The possibility of both x > 1 and ¥ < 1 is independent
of the discreteness or continuity of the test statistics. Moreover, there is
no upper bound on «, even focusing only on small «. The range of these
possibilities is demonstrated below.

The examples are all of the following common form, involving at most
two spike trains, ¢, and t,, in a single trial. Let N; be the total number of
spikes in the trial for neuron i. N; and N, are deterministic. ¢, and ¢, are
uniformly distributed on the space of all possible (consistent) outcomes. All
such examples are conditionally uniform by definition, conditioned on any
A-coarsening. Thus, they are in (any) interval jitter null hypothesis. A visual
representation of the key idea in examples 1 and 4 is provided in Figure 3.

Example 1: A Conservative Spike-Centered Jitter Test (¢ < 1/2).
Consider the example of a single spike: suppose N; =1 with proba-
bility 1. The spike train is specified by tiqs which is uniformly dis-
tributed on the interval [0,1]. Let 0 < A < 1. (It does not matter how
edge effects are handled in this example.) Let the statistic f(f,f,) =1, ;.
Conditioned on {A/2 <t;; <1— A/2}, the law of large numbers (LLN)
implies that p(X, R) — 1/2, as K — oo. Thus, for any o < 1/2, we have
infy , Pr(p(X, R) < @) = 0, demonstrating conservatism. A generalization
of this example is implicit in Amarasingham et al. (2011).

Example 2: An Invalid Spike-Centered Jitter Test (1/2 < o < 1). Re-
peat example 1, except now consider o > 1/2. By the same reasoning,
SUpy A Pr(p(X,R) < a) =1 > «, so the test is invalid (x = al>1).

Example 3: A Conservative Spike-Centered Jitter Test (¢ < 1/2).
For another (somewhat more natural) example, consider N; =N, = 1.
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Figure 3: Illustration of examples 1 and 4. The top spike trains represent the
observed data, where the spike-centered jitter window length is indicated. The
shaded areas correspond to the edges. The collection of spikes below represents
the surrogate data. The gray color and the dashed line are only for visual clarity.

Let f(t),t,) = |t;; —t4|, or consider N; =2 and let f(t,t,) =|t;, —
t; 1] In either case, conditioned on {A/2 < t; ; <1 — A/2 Vi, j, |t; j — b ;| >
A2V, j) # ([, j)}, p(X,R) — 1/2as K — oo (LLN). Thus, as in example
1, forany o < 1/2, we have infy , Pr(p(X, R) < o) = 0, demonstrating con-
servatism. Note also that p(X, R) is (absolutely) continuous in this example
as well as example 1, so the exhibited conservatism is not a consequence of
discreteness.

Example 3a: Synchronization. Sticking to the spike process of example
3,use f(t, t,) = —|t; ;| —t, ;| (analogous to a left-tailed test). The conclusion
is the same. With respect to interval jitter, the statistic implies power toward
alternatives that favor spike synchronization, though in a different sense
from equation 2.2. The example has natural generalizations to physiological
settings, including multiple-spike, multiple-trial versions. The qualitative
conclusion is the same. Similarly, f(t,,t,) = —|t; ; —t,, — j| targets lagged
synchronization at time lag j. (Think of cross-correlogram analysis.) Note
the implications for sensitivity.

Example 4: An Invalid Spike-Centered Jitter Test, o (Arbitrarily) Close
to 1/3, « (Arbitrarily) Close to 3/2. A relatively simple example can be
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constructed with discrete (binary) spike trains. For example, consider a 1 ms
discretization, with time specified in ms units. Suppose again that N; = 1
with probability one and also that A = 2. In this case, ¢, ; takes values in
{1,2,..., T}, whereT is the length of a trial in ms (for simplicity, suppose T is
even). Let f(t,,t,) = (=1)"1. Tt follows that P(S, = 1) = P(S, = —1) = 1/2.
Conditioned on {S,=1,2 <t;; <T -1}, p(X,R) converges to 1/3 as
K — oo. Conditioned on {S, = —1,2 < t;; < T — 1}, p(X, R) = 1 (for all K).
Thus, sup;  Pr(p(X, R) < % +¢€) = %, for sufficiently small € > 0, which
demonstrates a permissive procedure with « arbitrarily close to 1/3. (More-
over, this gives sup;  Pr(p(X,R) < % + e)/(% +e)= % + O(e), for suffi-
ciently small € > 0, as well.)

Example 5: An Invalid Spike-Centered Jitter Test, o Arbitrarily Small,
« Arbitarily Large. Expanding on example 4, take discretized binary spike
trains (e.g., with 1 ms bins), and let N; = m with probability one (m an

arbitrary natural number) and A = 2. Let f(t,,t,) = Z:’;l(—l)tlvk, and let
Abetheevent {|t;; —t; ;| >2Vi# j, 2<t,; <T -1Vl <i < N,}. We note
that:

1. Pr(A,Sy=m) - 2"asT — oo.
2. Conchtloned on {S, =m, A}, p(X,R) - 37" as K — oo (LLN).

Consequently,
supr x Pr(p(X,R) < 37M4e)=>27",
and
supr g, Pr(p(X,R) =37 +€)/3 " +¢) =

for all sufficiently small € > 0. Thus, there is no upper bound on « in the
sense that sup,, «(a) = oo (H, here is the interval jitter null hypothesis). A
0

related relevant implication is that lim sup,, |, supy, « (o) =
0

Remark 1: Edge Effects. In example 1, edge effects are sidestepped by
conditioning on the event that ¢, ; is not near the edge. This event can
be made arbitrarily unlikely by taking A small (alternatively, make the
interval arbitarily long). Thus, edge effects do not underlie the phenomena
we highlight. The same idea is used in the other examples, as well as the
analogous idea to preserve a minimum distance between spikes. This is
all that is needed because here we are only seeking counterexamples (see
section 5). Another way to understand the irrelevance of edge effects is to
construct the examples directly on the circle, generalizing the test statistics
as appropriate. Then there are no edge effects by definition, but the identical
phenomena occur.

Remark 2: Symmetry of the Jitter Distribution. The uniformity of the
jitter distribution does not play an important role either, as all the effects
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will persist if the jitter distribution is nonuniform yet symmetrical. For
example, it is clear in the first three examples that the main phenomenon is
simply due to the fact that spike-centered jitter is equally likely to move a
spike forward as backward.

As a final remark, we note that the physiological relevance of the ex-
amples is besides the point. Rather, the goal is to clarify the concerns with
respect to spike-centered jitter hypothesis tests using examples in which
the relevant probabilities can be easily computed. At the least, they demon-
strate that some restriction on the class of statistics is a requirement to
avoiding hallucinations with spike-centered jitter. This is in contrast to in-
terval jitter, where p(X, R) is a proper p-value for the null hypothesis (of
conditional uniformity), regardless of the test statistic. Even these relatively
simple examples hint that using more physiologically motivated statistics
with spike-centered jitter should immediately warrant concern, particularly
for complex test statistics (Shmiel et al., 2006). However, the examples may
not be altogether pathological. Example 3a is relevant to synchronization
studies. Also, the statistic f in examples 4 and 5 essentially quantifies phase
locking of spikes or spike bursts to an (extremely smoothed, coarsened)
oscillating field (Jones, 2016). The latter examples can be rescaled to cor-
respond to a synchronization example involving physiologically relevant
oscillation frequencies as follows. Generate and then coarsen and threshold
an oscillatory inhomogeneous Poisson train and a homogeneous Poisson
train, both of them independent. With appropriate choices for relevant pa-
rameters (period of oscillation, constants of coarsening and thresholding,
and firing rates), a stochastic version of examples 4 and 5 can be reproduced
with realistic firing rates, employing the identical statistic f. In effect, syn-
chronization is measured with respect to an oscillating spike train rather
than an external oscillation. As expected, the result in numerical experi-
ments is an excess of small p-values, in the sense of hallucination (results
not shown).

Analogous but more complex versions of examples 1 to 5 can also be
constructed from homogeneous Poisson processes.

4 Poisson Approximations of Interval Jitter Can Produce Nonuniform
Approximate p-Values

It is natural to use a Poisson approximation to facilitate jitter computations
(Abeles & Gat, 2001), as in the convolution method (Stark & Abeles, 2009).
What is the effect of such an approximation? Here we illustrate that Poisson
approximation errors can have practical consequences. A single numerical
example suffices to make the point. We will work here with a simplified
interval jitter example, using synchrony as a test statistic. The interval jitter
null hypothesis is that spike times are conditionally uniform, conditioned
onC, (t;,t,) (see above). In the simplest case, consider a spike process such
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that the spike count in each interval is at most one (for both spike trains).
Synchrony is the test statistic (see equation 2.2). Under the null, conditioned
on C, (t;,t,), the synchrony test statistic is binomially distributed with
parameters N and g, by which we mean Pr(S, = sC, (t;,£,)) = (Y)°(1 —
q)N=s (the parameters N and g depend on C, (t,,t,); N is the number of
intervals with spikes in both trains; g = 1/A). This binomial distribution can
be approximated as Poisson with parameter Ng. This suggests two ways
to compute a p-value for this null hypothesis. In the first, an exactly valid
p-value is given by Pr(X > 5,|S,), where X is distributed as a binomial
random variable with parameters (N, g), and independent of S,. In the
second, an approximately valid p-value is given by Pr(Y > 5,|S,), where Y
is distributed as a Poisson random variable with parameter Ng, independent
of S,.

Tohe p-values, resulting from either the original binomial distribution or
the Poisson approximation, cannot be uniformly distributed because in both
cases, the synchrony statistic is discrete. (The exactly valid method will give
subuniform p-values.) Abeles and Gat (2001) used a randomization tech-
nique to generate strictly uniform p-values. The technique can be described
as follows. Sample U independently and uniformly from the interval [0, 1],
and then compute

p(X)=U-Pr(Y = X|X) + Pr(Y > X|X). 4.1)

Then p/(X) will be strictly uniform. (See the appendix for an intuitive
derivation of this formula.) In the example discussed above, the (condi-
tional) distribution of synchrony, under the (conditional) null hypothesis,
is exactly binomial. (Note that there is no need for Monte Carlo surrogates
in this example.) A numerical example, using N = 500, g = .1is provided in
Figure 4A. Thus, use of this technique produces uniformly-distributed p-
values (Figure 4C). However, the technique depends on the fact that the
conditional distribution is known exactly. If an approximation of the condi-
tional distribution, such as a Poisson approximation, is used instead, there
are no corresponding guarantees of uniformity. The randomized approxi-
mate p-values, computed from the Poisson distribution, are visibly nonuni-
form (see Figure 4D), suggesting conservative tests for small « (invalid tests,
for sufficiently large o).

5 Discussion

The distinction between spike-centered and interval jitter might appear es-
oteric to some readers. Nevertheless, these results indicate that it is not as
mild as it appears. For example, even in the prototypical case of analyz-
ing synchrony between independent homogeneous Poisson processes, the
spike-centered jitter procedure can be surprisingly more conservative than
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Figure 4: Nonuniformity of randomized p-values induced by Poisson approxi-
mation. Fifty thousand binomial random variables were independently drawn
with parameters N =500 and g = .1, to construct 50,000 p-values. The his-
tograms were computed using a 0.01 bin width. p-Values were constructed by
(A) using the exact binomial distribution without randomization, (B) Poisson
approximation without randomization, (C) using the exact binomial distribu-
tion with randomization, and (D) Poisson approximation with randomization.
In all panels, the horizontal dashed line represents the theoretical limit (as the
number of samples goes to co) if the p-value distribution is truly uniform.
Compare panels C and D to notice the nonuniformity induced by Poisson ap-
proximation alone. In panels C and D, the insets represent the respective cumu-
lative distribution, Pr(p(X, R) < «) or Pr(p.(X, R) < «) (as appropriate). Note
in panel D that the test is conservative for small o and invalid for sufficiently
large values. Code is available at https://github.com/aamarasingham /bjitter.

interval jitter. This insensitivity is not simply an artifact of discrete statistics.
More striking, we show with relatively simple examples that spike-centered
jitter can even hallucinate temporal structure to an arbitrary extent. Thus,
we caution the use of spike-centered jitter as a rigorous test of hypotheses
regarding temporal structure.
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It is worth emphasizing that these issues clearly generalize beyond iso-
lated pairs of spike trains and will scale up when applied to large data sets
involving multiple neurons, test statistics, and periods of analysis. Such set-
tings amplify the dangers of invalid tests. Correspondingly, multiple testing
corrections constructed in such situations will generally require that they
are built out of hypothesis tests that are valid in isolation.

In reviewing the literature on these topics, a common theme in these
discrepancies is a lack of a well-specified null hypothesis. We wondered
whether this has practical implications. The subtleties reported here indeed
make a case for rigorous treatment (i.e., precise specification of null hy-
potheses, in the classical sense). Our conclusions are largely consistent with
the overview in Amarasingham et al. (2012).

Once oriented in this direction, other issues arise. As an example, inter-
val jitter has more degrees of freedom than spike-centered jitter, associated
with the selection of an interval’s location. This arbitrariness can make prac-
titioners uneasy. Here two points bear considering. The first is that the issue
is essentially identical to the arbitrariness associated with rounding (dis-
cretizing) measurements. When rounding, we anchor a discretization grid
on the origin (zero), but the choice of the origin is arbitrary. Second, there
are occasions when one can anchor the interval in an intuitively satisfying
way. In the case of synchrony or other cross-correlogram analyses, one can
choose to anchor intervals with respect to a reference train (Hatsopoulos,
Geman, Amarasingham, & Bienenstock, 2003). For example, in a synchrony
analysis, center the intervals around the spikes in a reference train; then
jitter the spikes in the target train, respecting the intervals.

More fundamentally, however, the arbitrariness of interval locations is a
symptom of the broader problem that the (conditional) uniformity assump-
tion is an approximation. A more precise null hypothesis would accommo-
date relative variations in the conditional likelihood of spike placement (cf.
tilted jitter: Amarasingham et al., 2012), patterned structures such as bursts
and refractory periods (cf., pattern jitter: Harrison & Geman, 2009; Ama-
rasingham et al., 2012), multiple comparisons corrections (Amarasingham
et al., 2012; Harrison, Amarasingham, & Truccolo, 2015), and quantitative
measures of effect size (Amarasingham et al., 2012). With respect to tech-
nique, it seems reasonable to expect that statistical precision ought to be
applied in proportion to the subtlety of observed effects. In scenarios in-
volving strong effects, this may justify a conservative approach (Fujisawa,
Amarasingham, Harrison, & Buzsdki, 2008). In more subtle scenarios, it
underscores the need for finely grained analysis.

Related to the above comments, our purpose in using processes with
no temporal structure in these examples was to clarify these issues in
the simplest setting. For the same reasons, we focused on examples (i.e.,
sparse firing) where refractory and bursting phenomena, as well as edge ef-
fects and firing rate inhomogeneities, are irrelevant to probability computa-
tions. Here, these complications were avoided only for clarity of exposition.
The issues we have discussed will remain essentially the same embedded
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in more complicated structures. The same motivations led us to use the
randomization approach to handling discretization artifacts. There are pro-
cedures for multiple hypothesis testing corrections that do not rely on
randomization (see Amarasingham, Chen, Geman, Harrison, & Sheinberg,
2006, for an example in a neurophysiology setting), which we anticipate to
be more powerful (data efficient).

Finally, we have largely ignored the inconvenience of excessively time-
consuming computation, which in day-to-day work is a major motivation
for using approximate methods. We hope that the observations highlighted
here will encourage further development of computationally efficient proce-
dures that can be rigorously understood or rigorously calibrated (Harrison,
2013; Jeck & Niebur, 2015).

Appendix

A.1 Conditionally Uniform Distributions. Consider a pair of spike
processes, with the property that the spike trains are conditionally uniform
and independent, conditioned on (N, N,), for each neuron. In the setting
of discrete spike trains, this means that, conditioned on (N, N,), all spike
trains consistent with (N;, N,) are equally likely. In the setting of continu-
ous spike trains, this means that the conditional joint probability density
function of (t,, t,), conditioned on (N, N,), depends only on (N;, N,).

Conditionally uniform processes include homogeneous Poisson pro-
cesses as a special case, but the class is broader than Poisson. For example,
in section 3, all our conclusions were reached with (non-Poisson) examples
in which N; and/or N,, specifying spike counts in an interval, are constants.
(See Amarasingham et al., 2012, for a more thorough development of the
motivation for using conditional uniformity as a null hypothesis for spike
trains, and various generalizations.)

A.2 Validity of Interval Jitter Hypothesis Testing. If the interval jit-
ter null hypothesis (conditional uniformity) is true, the subuniformity of
p(X,R) as defined in equation 2.1 is explained in Amarasingham et al.
(2012). This conclusion is a consequence of the fact that under the null hy-
pothesis, S, Sy, ..., Sk are exchangeable (see Amarasingham et al., 2011).!
From this, it follows that p(X, R) is subuniform (proposition A.3 in Amaras-
ingham etal., 2011). Since S, S/, ..., Si are also exchangeable, it follows by
the same logic that p,(X, R) is subuniform. Moreover, p.(X, R) is absolutely
continuous. Thus, under the null hypothesis, p.(X, R) is distributed as a
uniform random variable.

To address potential confusion, it is worthwhile focusing on what the
assumption of exchangeability is not. Obviously it is not equivalent to the

LA finite collection of random variables Y;,Y,, ..., Y, is exchangeable if its joint dis-
tribution is invariant to permutations of its arguments. That is, Pr((Y;,....Y,) € A) =

Pr((Yn(l) ..... Y, (n)) € A) for all sets A and all permutations 7 of the index set (1, ..., n).
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assumption that S, S;, ..., Sg are independent and identically distributed.
What is more relevant, it is also not equivalent to the assumption that
So» Sy, -+ -, Sk are identically distributed. Example 1 in section 3 is a clear
expression of this distinction. Consider this example on the circle instead
of an interval (see remark 1). Here S, S, ..., Sx are not exchangeable,
although they are identically distributed. This alone shows that it is not
sufficent to establish that S, S;, ..., S¢ are identically distributed (Pipa,
Grun, & van Vreeswijk, 2013). Indeed, continuing to focus on continuous
time and preserving the circle construction, S, S, ..., Sy are identically
distributed for any uniform spike process and any test statistic for both
spike-centered and interval jitter.? (Interval and spike-centered jitter are
“measure preserving.”) Conceptually, this is likely the source of the intuitive
conflation of the two methods. At root, the distinction is one of conditional
versus unconditional inference (see the discussion of this distinction in
Amarasingham et al., 2011).

A.3 Sensitivity. Returning to the example of section 2, a consequence
of conservatism is that the spike-centered jitter procedure is less sensi-
tive than the interval jitter procedure in detecting nonaccidentally syn-
chronous events, when they are present. As a demonstration, consider the
following numerical experiment. Generate a third independent homoge-
neous Poisson spike train with rate A, and superpose (“inject”) spikes
from the third train onto the spike trains from neurons 1 and 2. This is
a model of injected synchrony. (The injected spikes are perturbed slightly
prior to injection so that the synchronous spikes are not perfectly instanta-
neous.) Then compare the sensitivity of tests specified by the critical region
{p.(X,R) < o} generated by the spike-centered and interval jitter proce-
dures, respectively. Consistent with intuition, the interval jitter test is more
sensitive. For one example, we repeated the experiment of Figure 2, using
a = 0.05 and A, = 2 Hz. The rejection event {p.(X, R) < a} occurred in 2%
of the trials using the spike-centered jitter procedure and 8% of the tri-
als using the interval jitter procedure across 50,000 trials. Other parameter
settings generated similar numerical conclusions (results not shown; see
https:/ /github.com/aamarasingham /bjitter for code).

A.4 Exact Tests and Subuniform p-Values. The motivation for sub-
uniform (as opposed to uniform) p-values in hypothesis testing can be
understood through several routes.

A4.1 An Elementary Example. As a general nontechnical example of
nonuniformity, keep in mind the most familiar elementary examples in

2A more general observation is that under these conditions, (S,, S j) are pairwise
exchangeable for any jin (1,2, ..., K}, for both interval and spike-centered jitter.
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which p-values are strictly subuniform as a consequence of discreteness.
For example, consider H, : X ~ Binomial(N, .5). A textbook p-value is
Pr(Y > X|X), where Y and X are independent and identically distributed
(ii.d.), which computes the area to the right of the curve under the proba-
bility mass function. This p-value is subuniform but not uniform.

A.4.2 Nonrandomized Testing. More technically, in the standard general
approach for defining p-values for nonrandomized (deterministic) tests
(Lehmann & Romano, 2005), one begins with a nested family of hypothesis
tests, associated with a continuum of significance values: for each signifi-
cance level o, 0 < o < 1, one associates a critical region T, a subset of the
sample space that satisfies Pr(X € T,) < «. Thisis the standard definition of
an exact hypothesis test. It is called nonrandomized if T, is deterministic. A
nested family of hypothesis tests is one in which the corresponding critical
regions are nested:

T,CcT, ifa<d. (A1)
In such a setting, the p-value is formally defined as
ﬁ(Tm} = Fa{Td)(X) =infla: X e T}, (A.2)

where we have used the subscript {T,} to emphasize the dependence of
the p-value on the choice of nested hypothesis testing family. In this case,
ﬁ{Tu} is guaranteed to be subuniform (lemma 3.3.1 in Lehmann & Romano,
2005). Thus, a nested family of hypothesis tests determines the p-value
distribution (and it is subuniform).

What is more, any subuniform random variable can be used to construct
a nested family of hypothesis tests. Given a subuniform random variable
q(X) (see equation 3.1), define T, = {x : q(x) < «}. One can verify directly
that the resulting hypothesis tests are exact and nested and, further, in this
case

Py (X) = infla: X € T/} = g(X). (A3)

Thus, subuniform random variables and nested families of hypothesis tests
are in exact correspondence (in nonrandomized testing). It follows, for ex-
ample, that if a given random variable is not subuniform for some distribu-
tion, it cannot be a p-value for any hypothesis testing system that includes
that distribution in the null hypothesis.

A.4.3 Randomized Testing. In our case, the function of interest is p(X, R),
where R (encoding the Monte Carlo surrogates) is a random variable
that depends on X, so the construction of T, must be generalized.
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The analogous generalization (Lehmann & Romano, 2005) {X : p(X, R) <
a with probability one} might be degenerate in our setting. A workaround,
implicit here, is to incorporate the randomization mechanism into the sam-
ple space and then apply the nonrandomized testing framework. In our
setting, consider the sample outcome to be (X, R). As established earlier,
p(X, R) is subuniform. Then define the critical region T :

T, = {(x, N|p(x,7) < a}. (A.4)

The consequence is the same: the resulting tests are exact (Pr((X,R) € T,)) <
«) and the p-value is p(X, R) (and subuniform), even though p(X, R) will
inherit the randomness of R (see the appendix to Amarasingham et al., 2012;
Habiger & Pena, 2011, also develop this interpretation in greater generality).
Thus, the p-value p(X, R) is stochastic, but the associated tests are still exact.

A.4.4 Monte Carlo Approximation. For completeness, it is worth pointing
out that in the discrete setting, a third interpretation of equation 2.1 is that
p(X,R) is a Monte Carlo approximation of the p-value p*(X), associated
with the deterministic permutation test, a nonrandomized test (Harrison
et al., 2015; Ernst, 2004):

Z{X’:CA(X’):CA(X)} L{f(#). t5) = Sp}
HX :CA (X)) =C, (X))} ’

pX) = (A.5)

which borrows from the fact that p(X, R) — p*(X) as K — oo (# represents
cardinality in equation A.5). But this interpretation does not make clear, as
itis above, that p(X, R) is subuniform for all K, not simply in that aymptotic
limit.

In summary, p-values for exact tests are subuniform, and a random variable
that is subuniform (for H)) can be used to construct exact tests for H,, such
that that subuniform random variable is the p-value. In that sense, subuni-
formity of a random variable (in H)) is a necessary and sufficient condition
for exact hypothesis tests of H,. Note, finally, that if a random variable is
subuniform and (absolutely) continuous, then it must be uniform. This mo-
tivates the trick for converting subuniform p-values to uniform p-values in
sections A.2 and 5.

A.5 p-Value Transformation. The standard elementary approach for
constructing p-values for a random variable X when the null hypothesis
or conditional null hypothesis is a unique (and computable) distribution is
as follows. Construct a random variable Y that has the same distribution
as X and is also independent. Then let p(X) = Pr(Y > X|X) (this is an
application of the definition of a p-value, equation A.2, in this setting). It is
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readily apparent that p(X) is subuniform (see equation 3.1; see also lemma
3.3.1in Lehmann & Romano, 2005). The corresponding tests have power for
alternative distributions that tend to be “greater” than that of X. However,
p(X) will not be strictly uniform, if X is discrete.

Here is an intuitive construction for generating strictly uniform p-values,
which involves randomizing the data. For simplicity, consider the case that
X is integer-valued. Construct a new random variable X, = X + €y, where
€y is independent of X and uniformly distributed on [-1/2,1/2]. Anal-
ogous to the above, suppose X. and Y, are independent and identically
distributed. Compute p'(X) = Pr(Y, > X_|X,). Then p'(X) will be subuni-
form and absolutely continuous. Thus, p'(X) will be uniform.

To compute p'(X), note that

P (X)=Pr(Y, = X.IX,)
=[(X +1/2) = XJPr(Y = X|X) + Pr(Y > X|X). (A.6)

Since [(X + 1/2) — X_] is uniformly distributed on [0,1], this is equivalent
to drawing a sample U independently from a uniform distribution on [0,1]
and computing

p(X)=Pr(Y, > X.|X.) =U-Pr(Y = X|X) + Pr(Y > X|X). (A7)

Since, by construction,Y > X <= Y, > X, it follows that tests constructed
from p(X) and p'(X) will behave identically except for those outcomes
exactly at the critical threshold. There is no loss of generality if X is not an
integer, or if 1/2 above is replaced with a different constant b. The main
ingredient is only that b and the bounds on €y are chosen so as to preserve
Y>X < Y. >X.

Glossary

C, (t,.t,): A-coarsening of spike trains f, and t,

A:jitter window width

8: synchrony window width

f: function to compute the test statistic

K: number of surrogate spike trains

N;: number of spikes in the spike train i

R=@", e, #0 +0)

Sy: test statistic derived from the original spike train pair
S,: test statistic derived from surrogate spike train pair k
S;: randomized S;

t,: spike train 1

t: Monte Carlo resampled spike train i, surrogate k

X = (t;.1,)
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