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Abstract

Resonance is defined as maximal response of a system to periodic inputs in a limited fre-

quency band. Resonance may serve to optimize inter-neuronal communication, and has

been observed at multiple levels of neuronal organization. However, it is unknown how neu-

ronal resonance observed at the network level is generated and how network resonance

depends on the properties of the network building blocks. Here, we first develop a metric for

quantifying spike timing resonance in the presence of background noise, extending the

notion of spiking resonance for in vivo experiments. Using conductance-based models, we

find that network resonance can be inherited from resonances at other levels of organiza-

tion, or be intrinsically generated by combining mechanisms across distinct levels. Reso-

nance of membrane potential fluctuations, postsynaptic potentials, and single neuron

spiking can each be generated independently of resonance at any other level and be propa-

gated to the network level. At all levels of organization, interactions between processes that

give rise to low- and high-pass filters generate the observed resonance. Intrinsic network

resonance can be generated by the combination of filters belonging to different levels of

organization. Inhibition-induced network resonance can emerge by inheritance from reso-

nance of membrane potential fluctuations, and be sharpened by presynaptic high-pass filter-

ing. Our results demonstrate a multiplicity of qualitatively different mechanisms that can

generate resonance in neuronal systems, and provide analysis tools and a conceptual

framework for the mechanistic investigation of network resonance in terms of circuit compo-

nents, across levels of neuronal organization.

Author summary

How one part of the brain responds to periodic input from another part depends on reso-

nant circuit properties. Resonance is a basic property of physical systems, and has been

experimentally observed at various levels of neuronal organization both in vitro and in

vivo. Yet how resonance is generated in neuronal networks is largely unknown. In partic-

ular, whether resonance can be generated directly at the level of a network of spiking
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neurons remains to be determined. Using detailed biophysical modeling, we develop a

conceptual framework according to which resonance at a given level of organization is

generated by the interplay of low- and high-pass filters, implemented at either the same or

across levels of neuronal organization. We tease apart representative, biophysically-plausi-

ble generative mechanisms of resonance at four different levels of organization: mem-

brane potential fluctuations, single neuron spiking, synaptic transmission, and neuronal

networks. We identify conditions under which resonance at one level can be inherited to

another level of organization, provide conclusive evidence that resonance at each level can

be generated without resonance at any other level, and describe a number of representa-

tive routes to network resonance. The proposed framework facilitates the investigation of

resonance in neuronal systems.

Introduction

Resonance refers to the maximal response of a system to periodic input in a limited (finite

non-zero; “resonant”) frequency band. In neuronal systems, resonance has been observed at

multiple levels of organization and quantified using various metrics, in all cases capturing the

notion of optimal gain. In the simplest case, similarly to RLC circuits, the subthreshold

response of an isolated neuron to oscillatory inputs has been measured in terms of the imped-

ance amplitude profile, quantifying the amplitude response of the membrane potential fluctua-

tions as a function of the input frequency [1–7]. A neuron exhibits cellular-level resonance of

membrane potential fluctuations if the impedance magnitude peaks at a non-zero frequency.

Otherwise, individual neurons may behave as low-pass filters [6,8,9] or may exhibit more com-

plex behavior depending on the number and type of ionic currents and their time scales [8,10–

12]. In addition to resonance of membrane potential fluctuations, cellular-level resonance may

occur at the spiking level: spikes may preferentially occur at specific frequencies of an oscil-

latory input current [2,8], yielding spiking resonance. Beyond the cellular level, resonance may

occur at the level of synaptic transmission: the amplitude of postsynaptic potentials (PSPs)

may peak at some instantaneous rate of the presynaptic spikes [13–15]. Finally, computational

modeling [16–21] and in vivo experiments [22] showed that resonance may occur at the net-

work level.

Theoretical studies have shown that subthreshold resonance can be communicated to the

spiking regime [11,23,24]. A possible implication of this observation is that resonance can be

inherited over levels of neuronal organization, either directly or indirectly. For instance, sub-

threshold resonance at theta frequencies may be expected to create spiking resonance at theta

frequencies, which may in turn generate network resonance at theta frequencies when reso-

nant spiking neurons interact with other neurons. Alternatively, the interplay of the positive

and slower negative feedback effects operating at interacting levels of organization may com-

municate resonance across these levels. However, direct periodic activation of hippocampal

CA1 pyramidal cells that have been shown to exhibit subthreshold resonance in vitro [3,25]

did not produce network resonance in vivo, whereas direct activation of inhibitory neurons

did [22]. Thus, it is still unclear whether and under what conditions resonance at one level of

organization is causally related to (e.g., is inherited from) resonance at another level. One

obstacle to addressing these issues is the lack of a general framework for investigating the

mechanisms of generation of neuronal resonance in terms of the frequency-preference proper-

ties of system components.
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The specific question we address in this paper is whether resonance observed at one level of

organization is necessarily inherited from resonance at lower levels of organization (e.g., mem-

brane potential fluctuations, single neuron spiking, postsynaptic potentials). Previous work

showed the presence of resonance in networks of rate models [19,20]. Other work demon-

strated resonance in spiking neurons [23,26–29]. However, a direct link between resonance in

a single spiking neuron and a network of spiking neurons has not been shown (although see

[19], describing a comparative analysis between resonance in networks of spiking neurons and

rate mdoels). An alternative manner in which network resonance can be generated is by the

existence of independent processes that may share some building blocks, and act to generate

resonance at distinct levels. This alternative scenario does not preclude the existence of neuro-

nal systems in which resonances are communicated across levels of organization, particularly

from the subthreshold to the network levels.

To tackle this question, we carry out detailed conductance-based modeling of individual

neurons and neuronal networks. We identify and analyze a number of case studies at various

levels of organization and increasing levels of complexity, where the generation of resonance

depends on mechanisms confined to each level. Capturing the complexity of the problem, par-

ticularly the interaction between levels of organization, requires going beyond the linear

domain and weak signals where the classical mathematical analysis of linear systems is possible

and mean-field theory of irregularly spiking neurons is applicable. Therefore we entirely rely

on computer simulation of a number of scenarios carefully designed to address a specific ques-

tion or shed light on a specific issue. We find that despite the nonlinearities and complexity of

the neuronal systems examined, the resonance-generating mechanisms can be described in

terms of the interplay of low-pass filters (LPFs) and high-pass filters (HPFs). The filtering

building blocks (or modules) depend on the biophysical and dynamic details and structure

specific to each level. In contrast, network resonance can be generated by combining low- and

high-pass filtering mechanisms across levels of organization, in the lack of resonance at any

other level of organization.

Results

Two distinct types of spiking resonance: cycle-averaged firing rate

resonance and spike timing resonance

In the context of rhythmic systems (Fig 1A), one can differentiate between two types of

responses: an oscillator and a resonator. In an electric oscillator that receives as input a square

pulse of current, the output is an oscillatory voltage (Fig 1B, left). The generation of oscilla-

tions in neuronal systems has been studied extensively [7,30]. A second type of rhythmic sys-

tem is a resonator (Fig 1B, right). Resonance is defined as a maximal response of the system to

a periodic input at a non-zero finite frequency or frequency band. In neuronal systems, reso-

nance has often been discussed in the context of current input to a single neuron [31]. In a sin-

gle neuron, resonance at the subthreshold level occurs when the amplitude of the response

variable (e.g., voltage: the membrane potential, Vm) peaks at a non-zero frequency of the input

(e.g., current) applied to the neuron (Fig 1B, right). This can be quantified using the imped-

ance amplitude profile, capturing the ratio between the output and input amplitudes at every

input frequency. Ultimately, neurons transmit their output as spikes. A natural direct exten-

sion of the analog (subthreshold) definition of resonance to the spiking domain is “cycle-aver-

aged firing rate resonance” (Fig 1C), which can be fully quantified by the cycle-averaged firing

rate metric. In cycle-averaged firing rate resonance, the rate of spikes fired by the neuron is

maximal when the frequency of the input (e.g., the presynaptic spike train or the current

applied to the neuron) is at a non-zero frequency band.
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The usage of a discrete output (spikes) allows a second type of resonance to be considered,

which we denote as “spike timing resonance” (Fig 1D). In spike timing resonance, the cycle-

averaged firing rate can be the same for all input frequencies (Fig 1D, top left). However,

Fig 1. Cycle-averaged firing rate resonance and spike timing resonance. (A) To quantify the response, a system is given an input

(e.g., current or spikes) and the output is measured. (B) Left: Induced oscillations are defined are as a rhythmic output in response to a

non-rhythmic (e.g., pulse or noise) input. Right: Resonance is defined as a maximal response of the system to periodic input at a non-

zero finite input frequency or frequency band. In neuronal systems, this definition readily applies to analog quantities, e.g., the

membrane potential fluctuations. (C) Cycle-averaged firing rate resonance is a direct extension of the analog quantity. A synthetic

neuronal signal was constructed in which firing rate at the 8–12 Hz range was twice the firing rate at other frequencies (top left). Actual

spike trains were realized by randomly drawing the number of spikes per cycle from a Poisson distribution. This corresponds to a

horizontal band in the fingerprint, a 2D frequency-phase map of instantaneous firing rates (second panel from right). Here and in all

fingerprints, blue corresponds to 0 spk/s, and red corresponds to the instantaneous firing rate indicated in the title (here, 56 spk/s).

The image is expanded to show 1½ cycles in the phase axis (abscissa). In this configuration, resonance is fully quantified by the cycle-

averaged firing rate (top right). (D) In spike timing resonance, the firing rate may be identical at all input frequencies (top left), but

spikes occur at specific phases in the resonant frequency band. A signal was constructed in which the phase of every spike was drawn

randomly from a von Mises distribution, for which the concentration parameter κ was higher at the 8–12 Hz range (bottom left). This

corresponds to a high instantaneous firing rate at a specific combination of frequency and phase (red patch in the fingerprint; second
panel from right). In this configuration, the cycle-averaged firing rates are similar across frequencies (top right), and resonance can be

quantified using the input-output spectral coherence metric (bottom right).

https://doi.org/10.1371/journal.pcbi.1010364.g001
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spikes occur at a more limited range of phases at some frequency (e.g., 10 Hz; Fig 1D, bottom

left) compared to other frequencies (e.g., 5 or 15 Hz; Fig 1D, bottom left). Hence the output,

namely the instantaneous firing rate, is maximal at a given phase of a non-zero finite frequency

(the resonant frequency). Therefore, spike phase must be taken into account when quantifying

the preferred frequency response phenomenon. In this setting, the input (i.e., the oscillatory

current) and the output (i.e., the spike times) are more coherent at the resonant frequencies

(Fig 1D, bottom right). The spikes exhibit more consistent phase locking at the resonant fre-

quencies, which can be quantified using the spectral coherence. For the remainder of this arti-

cle, we refer to the magnitude of the complex spectral coherence simply as “coherence”.

Coherence ranges 0–1 and is maximal when spikes exhibit perfect phase locking to the peri-

odic input. Thus, in spike timing resonance, the coherence metric exhibits a maximum at a

finite, non-zero frequency.

In principle (and as illustrated in Fig 1CD), cycle-averaged firing rate resonance and spike

timing resonance are independent phenomena, and one can occur without the other. Indeed,

previous work in freely-moving mice showed that pyramidal cells exhibit inhibition-induced

spike-timing resonance, without exhibiting cycle-averaged firing rate resonance [22]. Spiking

fingerprints, as the ones presented by the 2D color images in Fig 1CD, are useful tools to visu-

alize the possible occurrence of firing rate resonance. To generate a fingerprint, the number of

spikes is counted at every relevant frequency and phase (over all trials), and divided by the

time spent in that bin, yielding instantaneous rates.

Previously, spiking resonance generated in the noise-driven regime was quantified by com-

puting the modulation of the instantaneous firing rate averaged over many trials in response

to sinusoidal input (e.g., [11,19]). In the lack of noise, the modulation metric is insensitive to

the number of spikes in every cycle. In the presence of high noise, the metric loses sensitivity

to the precise phase. In contrast, the coherence metric is sensitive to both the number of spikes

and the spike phase, both in the presence and in the lack of noise.

Both cycle-averaged firing rate resonance and spike timing resonance pertain to maximiz-

ing the output of the system at a non-zero input frequency. This is distinct from stochastic res-

onance [32,33], where the input-output relations are maximized at a non-zero level of noise

(in the presence of an external input); and from coherence resonance [34–36], where the sys-

tem exhibits maximally-coherent oscillations at a non-zero level of noise (in the absence of a

periodic input).

In summary, resonance in the spiking domain can be visualized using fingerprinting and

quantified using cycle-averaged firing rate, coherence, or both. From the perspective of a post-

synaptic neuron, cycle-averaged firing rate resonance and spike timing resonance capture the

input for neurons sensitive to firing rate and spike timing, respectively. When all (or at least

most) spikes are generated directly by the input, the two types of spiking domain resonance

coincide. This can be achieved in modeling studies and in controlled in vitro experiments in a

relatively straightforward manner. However, when there are additional spurious spikes not

created by the input as typically observed in vivo, resonance may appear and be detected only

as spike timing resonance.

Building blocks necessary for generating network resonance in neuronal

systems

With the metrics for cycle-averaged firing rate and spike timing resonance in hand, we exam-

ine how resonance at one level of organization is related to frequency-dependent mechanisms

at another level of organization. From an electrical circuit perspective, at least two building

blocks are required for resonance to occur: (i) high-pass filtering, and (ii) low-pass filtering.
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Amplification within the band-pass may further enhance resonance. The building blocks and

their interactions may be highly nonlinear. In neuronal systems, building blocks are realized

by biophysical constructs which can have the same or distinct origins (e.g., distinct combina-

tions of currents). The building blocks producing a given resonance may occur at the same or

at distinct levels of organization (e.g., synaptic and spiking). In general, the frequency-depen-

dent building blocks remain to be identified, and their interaction within and across levels of

organization remains to be understood.

Resonance generated at the subthreshold level can be inherited to the

network level

We begin with the best studied type of neuronal resonance, of membrane potential fluctua-

tions (Fig 2A; sometimes referred to as “subthreshold” resonance; [1,2,5,6]). To determine

whether subthreshold resonance can be inherited to the network level via spiking resonance,

we first examine the communication of subthreshold level to the spiking level; and then study

the communication from the spiking level to the network level. We modeled membrane poten-

tial resonance using a conductance-based neuron with leak, persistent sodium, and h-currents,

augmented with threshold spiking and reset. In the INa,p+Ih model, the subthreshold imped-

ance profile peaked at 7.5 Hz (Fig 2A, top right). In this case, the LPF corresponds to the

membrane capacitance and leak current (“RC”); the HPF, to the regenerative (h-) and leak cur-

rents; and the persistent sodium current acts primarily to amplify the band-pass response.

To understand whether and under what conditions resonance at the level of membrane

potential fluctuations can be inherited to the network level, we increased the amplitude of the

current input to the INa,p+Ih model neuron. At the minimal input amplitude required to gener-

ate spikes (0.15 μA/cm2), the spikes occurred specifically around 7–8 Hz (Fig 2B, left), the

same frequency at which the impedance profile peaked (Fig 2A). Spikes occurred near the

zero phase of the input, so both cycle-averaged firing rate resonance and spike timing reso-

nance were observed (Fig 2B, right; fingerprint at Fig 2C). To understand the conditions

under which resonance is inherited to the spiking domain in the INa,p+Ih model, we first modi-

fied input amplitude. We found that at higher amplitudes, spikes occurred coherently not only

around 8 Hz but also at multiple other frequencies (Fig 2D). Second, we modified the amount

of background inputs (noise; modeled by membrane potential variability, σ) in the model,

while holding the input amplitude fixed at 0.15 μA/cm2. We used a range of noise levels

between 0–2 mV, which is higher than observed during intracellular recordings using sharp

electrodes from freely-moving mice [37]. Under high noise circumstances, spikes occurred at

all frequencies and spiking resonance was lost (Fig 2E). Nevertheless, for a certain range of

input amplitudes and noise levels, resonance at the level of membrane potential fluctuations is

readily inherited to the spiking domain.

Next, we connected a resonant excitatory cell (E-cell; modeled as an INa,p+Ih spiking neu-

ron) via an excitatory (AMPA-like) synapse to a target cell, modeled as a leaky integrate and

fire (LIF) neuron that did not exhibit subthreshold resonance (Fig 2F). The postsynaptic target

LIF received relatively high background input (σ = 3 mV), and exhibited spontaneous spiking

(Fig 2F, top right). When oscillatory chirp current was applied to the presynaptic neuron, the

E-cell spikes induced additional spikes in the target cell, which displayed spiking resonance at

the same frequency range as the presynaptic E-cell (Fig 2F, bottom right). We denote this

phenomenon as “inherited network resonance”: resonance observed at the network level,

which is inherited from frequency-dependent mechanisms at another level of organization. A

similar pattern was observed in a larger network, consisting of 16 resonant E-cells that made

feedforward excitatory connections on four non-resonant target cells (Fig 2G). Notably, in the
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same network, applying the oscillatory current directly to the target cells did not induce reso-

nance in the target cells, even when current amplitude was increased (Fig 2H). In summary,

resonance generated at the level of membrane potential fluctuations (Fig 2A) can be inherited

to the spiking domain at low and intermediate noise levels (Fig 2B–2E). This extends previous

modeling results linking subthreshold and spiking resonance [5,11] by showing that when

input is very strong (Fig 2D) or when noise is very high (Fig 2E), subthreshold resonance is no

longer communicated to the spiking level. Furthermore, subthreshold resonance can be inher-

ited, via spiking resonance, to the network level (Fig 2F–2G).

Resonance can be generated directly at the spiking level

Conceptually, a subthreshold LPF generated by the passive (RC) properties of the membrane

could interact with a spiking-domain HPF to generate spiking domain resonance. We there-

fore examined the HPF mechanism that underlies the generation of spiking resonance in the

lack of resonance at the level of membrane potential fluctuations. First, we applied low-current

input (0.05 μA/cm2) to a LIF model neuron without noise, which yielded an impedance profile

corresponding to an LPF (Fig 3A). When current amplitude was increased (to 0.115 μA/cm2),

spikes started to occur at the peaks of the oscillatory input cycles. Once a first spike is gener-

ated, the after-spike reset of the LIF prevents another spike from occurring until the mem-

brane is recharged. If the cycle is sufficiently short, this results in only one spike per cycle, for a

range of frequencies (Fig 3B, left). Since there are more cycles per unit time (e.g., second) at

higher frequencies, the generation of a single spike per cycle automatically corresponds to high

pass filtering. We identify the “spike discretization” effect as an HPF. Together with the sub-

threshold LPF (Fig 3A), the net outcome is spiking resonance (Fig 3B, right; 3C). Thus, con-

sistent with earlier work [26–28], an isolated LIF model neuron can generate spiking

resonance in the lack of noise. However, the band-pass (resonant) spiking response is gener-

ated by frequency-dependent mechanisms at two distinct levels of organization. Specifically,

the subthreshold LPF interacts with a spiking HPF based on the discretization effect.

To determine the conditions under which spiking resonance can be generated in a LIF

model neuron, we first modified the input current amplitude. We found that narrow-band res-

onance occurred only at a small range of input amplitudes (Fig 3D). Furthermore, when

Fig 2. Resonance generated at the level of membrane potential fluctuations can be inherited to the network level. (A) A model neuron, consisting of leak

current, persistent sodium current (INa,p), h-current (Ih), and threshold-based spiking with voltage reset, was driven by periodic current at various frequencies.

Here and in B-D, σ = 0 mV. Left: Current input (dark blue traces, arbitrarily scaled) and membrane potential output (black traces) at three selected frequencies.

Top right: Impedance profiles. A simplified model neuron with leak current and membrane capacitance shows only a low-pass filter (LPF) response (“RC”;

dotted line). A simplified model with reduced capacitance shows only a high-pass filter (HPF) response (“Ih”; dashed line). The full model shows resonance

around 7–8 Hz (“RC, Ih, INa,p”). Bottom right: Phase of the membrane potential fluctuations at every frequency of the input current. (B) The model neuron of

panel A was driven by higher-amplitude sinusoidal currents. Left: Spikes are produced specifically at the input frequency that corresponds to the peak of the

impedance profile (panel A, top left). Right: The INa,p+Ih spiking model neuron shows firing rate (top) and spike timing (bottom) resonance. (C) Spiking

fingerprint (firing rate as a function of frequency and phase) for the same data as in panel B. Spikes occur at a specific frequency and near zero phase,

corresponding to the co-occurrence of both cycle-averaged firing rate and spike timing resonance. (D) The model neuron was driven by input currents of

various amplitudes (Ain) while holding noise at zero (σ = 0 mV). Horizontal dashed line indicates the Ain value used in panels B and C. At higher Ain values the

coherence becomes multi-modal. (E) The model neuron was driven by a fixed-amplitude input current (Ain = 0.15 μA/cm2) while varying membrane potential

variability σ. Coherence (left) and firing rate (right) are shown as a function of noise magnitude. At higher noise magnitudes, spikes occur at all frequencies and

spiking resonance is lost. (F) Top left: An E-cell, modeled by a INa,p+Ih spiking neuron as in panel A, was connected via an excitatory (AMPA-like) synapse to a

target I-cell, modeled as a non-resonant leaky integrate and fire (nrLIF) neuron. Bottom left: Constant-amplitude periodic current in the form of a linear chirp

(0–40 Hz, 20 s) was applied to the E-cell (purple trace), that also received low-magnitude noise (σ = 0.0125 mV). The target cell received higher noise (σ = 3
mV). Top right: The target cell exhibits both background and transmitted spikes. Bottom right: Spiking resonance is observed for both model neurons. (G) Top:

Voltage traces of four target I-cells (nrLIF; green) that received feedforward connections from 16 E-cells (INa,p+Ih spiking; purple). All E-cells received exactly

the same periodic input current; each cell received independent noise. Bottom: Coherence for every individual model cell (light traces), and averaged coherence

for the target cells (heavy green trace). Spiking resonance is exhibited for the indirectly-activated target cells. Inset: spiking fingerprint for an I-cell. (H) The

periodic input current was applied only to the I-cells; current amplitude was increased 16-fold; same network as in panel G. No spiking resonance is generated

in the I-cells.

https://doi.org/10.1371/journal.pcbi.1010364.g002
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background noise was increased, spikes occurred at all input frequencies, and the narrow-

band spiking resonance disappeared (Fig 3E; [26,28]). Thus, band-limited spiking resonance

in an isolated LIF that lacks resonance of membrane potential fluctuations occurs only at a

limited range of parameters.

The spiking resonance in the LIF model neuron involved a spiking-domain HPF based on

the discretization effect, but spikes were consistently generated below the resonant frequency.

Following a sodium spike, neurons exhibit a calcium transient: a rapid increase and slower

decrease of calcium, which is the basis of calcium imaging [38]. We used the calcium transients

to design a modified version of a LIF model neuron that includes spike-dependent calcium

dynamics (Fig 3F). By construction, the calcium current activates only in the presence of

spikes. Without the calcium current, the model exhibited only a LPF response in the sub-

threshold domain (Fig 3F, bottom right inset), and the spiking response exhibited a similar

profile (Fig 3F, red lines). Adding the spike-dependent calcium dynamics did not change the

subthreshold response, but a spiking band-pass filter emerged (Fig 3F–3G). During the cal-

cium transient, the membrane potential was more depolarized, allowing the generation of a

spike in response to a lower current input, effectively reducing spiking threshold. Thus, the

occurrence of one spike favored the occurrence of another spike during a specific time window

dictated mainly by the calcium activation and deactivation time constants. Thus, we identify

the calcium transients as a second spiking-domain HPF. Combined with the subthreshold

Fig 3. Resonance can be generated directly at the spiking level. (A) A leaky integrate and fire (LIF) model neuron was driven by periodic current at various

frequencies. Left: Current input (blue, arbitrarily scaled) and membrane potential (black) at three selected frequencies. Top right: Impedance profile shows an

LPF response. (B) The model neuron of panel A was driven by higher-amplitude periodic currents. Left: Spikes are produced at the peaks of the input cycles. At

higher frequencies (e.g., 12 Hz), more cycles occur per unit time than at lower frequencies (4 Hz), corresponding to an HPF (discretization effect). Right:
Combined with the subthreshold LPF (panel A), the “resonant LIF” (rLIF) exhibits spiking resonance. (C) Spiking fingerprint of the rLIF model; conventions

are the same as in Fig 2C. Spikes are generated at a specific range of frequencies and phases, corresponding to spiking resonance. (D) Coherence as a function

of input amplitude for the rLIF model; conventions are the same as in Fig 2D. At higher amplitudes, spikes occur at all input frequencies and the narrow-band

resonance disappears. (E) Coherence (left) and firing rate (right) as a function of noise level, holding input amplitude fixed (Ain = 0.115 μA/cm2) for the rLIF

model. When membrane potential variability increases, spikes occur at all input frequencies and the narrow-band resonance disappears. (F) A modified LIF

neuron was constructed with spike dependent calcium dynamics (“calcium LIF”). The calcium-LIF model neuron has an LPF impedance profile (bottom right,
inset). However, when driven by periodic current sufficient to generate spikes, the spikes appear at a specific frequency band (around 8 Hz; black traces).

Without the calcium conductance, only a low-pass spiking filter remains (red traces). (G) Spiking fingerprint of the calcium-LIF model; conventions are the

same as in Fig 2C. (H) Sensitivity analysis of the calcium-LIF to the calcium conductance Gc. The width of the resonant frequency band increases with Gc.

https://doi.org/10.1371/journal.pcbi.1010364.g003
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LPF, spiking resonance emerged (Fig 3F–3G). Increasing the calcium conductance widened

the resonant band (Fig 3H). Together with spike discretization in the isolated LIF, the two case

studies identify spiking HPFs. In particular, these cases demonstrate that spiking resonance

can be generated directly at the spiking level, without resonance at the level of membrane

potential fluctuations.

Resonance generated directly at the spiking level can be inherited to the

network level

To determine whether and how spiking resonance generated by a single LIF can propagate to

other cells, we first connected the resonant LIF (“rLIF”; Fig 3B) as an E-cell to a postsynaptic

target cell in a feedforward manner (Fig 4A, top left). The E-cell received a low level of mem-

brane potential noise, keeping spiking within the resonant range (see Fig 3E). In contrast, the

target cell was modeled as a non-resonant LIF (“nrLIF”) by increasing the membrane potential

noise, and exhibited spontaneous spiking. When an oscillatory current input was applied to

the E-cell, both the E-cell and the target cell displayed resonance (Fig 4A, right). The same

phenomenon was observed in a larger network with feedforward excitatory connections: when

current input was applied only to the E-cells, both the E-cells and the target cells exhibited res-

onance (Fig 4B; target cell fingerprint in Fig 4B inset). Thus, in a feedforward network of LIF

neurons, network resonance emerges by inheritance from the spiking domain, without feed-

back or any additional frequency-dependent mechanisms at the synaptic or network levels. In

previous work, spiking resonance was observed in recurrent LIF networks, in which E- and I-

cells were connected with negative feedback [19]. The present observations show that network

resonance can emerge in LIF networks without any recurrency or negative feedback, but

rather by inheritance from resonance generated at the single neuron spiking level.

When the noise applied to the E-cells was quadrupled, coherence magnitude for both

the E-cells and the target cells was reduced (Fig 4C), although spiking in the target cells

was still limited to specific phases (Fig 4C, inset). With gradually increased noise, E-cell

coherence gradually diminished (Fig 4D–4E, left), whereas the resonant frequency in the

target cells gradually shifted to higher values (Fig 4D–4E, right). These results emphasize

that even if resonance in a (LIF) network is entirely inherited from the single neuron spik-

ing level, the properties of the single cell spiking resonance and network resonance may

differ.

Resonance generated at the synaptic level can be inherited to the network

level

In addition to the level of membrane potential fluctuations (Fig 2) and the spiking level (Fig

3), resonance may be generated directly at the level of postsynaptic potentials (PSPs; [13–

15,39]. Following the previous work, we modeled resonance at the PSP level using short-term

synaptic dynamics (Fig 5). The model neuron was a LIF with a very high spiking threshold

(leaky integrator), and input was given as periodic spike trains (without oscillatory current

injection; Fig 5A). At the level of membrane potential fluctuations, the LIF exhibited only a

low pass response (same as the LIF in Fig 3A). When short-term synaptic dynamics included

both synaptic depression and facilitation, the excitatory PSP (EPSP) magnitude was highest

around 8 Hz (Fig 5A–5B). This phenomenon is referred to as synaptic, or PSP, resonance [13–

15]. In the depression/facilitation model of synaptic resonance, the LPF corresponds to synap-

tic depression (Fig 5C, dotted line) and the HPF corresponds to synaptic facilitation (Fig 5C,

dashed line). Notably, when no synaptic plasticity was modeled, we identified an intrinsic syn-

aptic HPF (Fig 5C, grey), consistent with temporal summation of multiple spikes by the
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membrane time constant. Thus, consistent with previous results [13,14], resonance at the level

of postsynaptic potentials can be generated without resonance at the level of membrane poten-

tial fluctuations.

Fig 4. Resonance generated at the spiking level can be inherited to the network level. (A) Top left: An E-cell, modeled by an rLIF as in Fig 3B, was connected

via an excitatory (AMPA-like) synapse to an I-cell, modeled by an nrLIF. Bottom left: Constant-amplitude periodic current in the form of a linear chirp was

applied only to the E-cell (purple trace), that also received low-magnitude noise (σ = 0.02 mV). Here and in B-E, Ain
e = 0.115 μA/cm2. Top right: The I-cell, that

received higher magnitude noise (σ = 2 mV), exhibits both background and transmitted spikes. Bottom right: Spiking resonance is observed for both model

neurons. Inset: Spiking fingerprints for an E-cell and for an I-cell. (B) Top: Voltage traces of four target I-cells (nrLIF; green) that received feedforward

connections from 16 E-cells (rLIF; purple). All E-cells received exactly the same periodic input current; each cell received independent noise. Bottom:

Coherence for every individual model cell (light traces), and averaged coherence for the E-cells (heavy purple traces) and the I-cells (heavy green traces). The

indirectly-activated I-cells exhibit spiking resonance. Inset: Spiking fingerprints for an E-cell and for an I-cell. (C) The noise level to the E-cells was quadrupled

(same network as in panel B). Spiking resonance of the I-cells is maintained, at a shifted (increased) resonant frequency. Inset: Spiking fingerprints for an E-cell

and for an I-cell. (D) Coherence of the directly-activated E-cells (left) and the indirectly-activated I-cells (right), as the magnitude of the noise applied to the E-

cell was varied systematically. Horizontal dashed lines indicate the E-cell noise levels used in panels B and C. Each row shows the average coherence (color

coded) across 16 E-cells (left) or four I-cells (right). (E) Quantification of the maximal coherence magnitude (left) and the peak (“resonant”) frequency (right)
for the dataset of panel D. Bands show SEM across cells. At low noise levels, E-cell and I-cell exhibit similar resonant frequencies.

https://doi.org/10.1371/journal.pcbi.1010364.g004
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To determine whether PSP resonance can be inherited to the spiking level, we set the spik-

ing threshold in the model LIF to a “standard” value (-50 mV). Under these conditions, the

model neuron exhibited spiking resonance, at frequencies similar to those exhibited by the

PSPs (Fig 5D). As for spiking resonance inherited from the subthreshold level (Fig 2C) and

resonance generated directly at the spiking level (Fig 3C, 3G), the spiking resonance inherited

from the PSP level occurred around zero phase (i.e., the input spikes; Fig 5E). In this case, a

short phase lag occurred, consistent with synaptic delay (i.e., the rise time of the EPSP; Fig

5A). When the level of noise was increased, coherence magnitude was reduced, and the reso-

nant frequency shifted to higher frequencies (Fig 5F). Thus, resonance generated at the level of

postsynaptic potentials can be inherited to the spiking level.

Noisy LIF with synaptic resonance exhibit spiking resonance at a frequency higher than the

PSP resonant frequency (Fig 5F). To examine the effect of PSP resonance on spiking reso-

nance in a network of neurons, we constructed a diverging/converging feedforward network

consisting of multiple noisy LIF with synaptic resonance that received the exact same input

spike train (Fig 5G). Indeed, the cells exhibited spiking resonance at a frequency higher than

the PSP resonant frequency (Fig 5HI). When these LIF converged on a common target, the

target neuron exhibited resonance (Fig 5HI), at a frequency shifted back to the PSP resonant

frequency. Thus, resonance generated at the level of postsynaptic potentials can be inherited to

the network level.

In the model of network level synaptic resonance (Fig 5G–5I), the resonance of the output

(layer 3) neuron is at a lower frequency and has lower coherence with the input, compared to

the intermediate (layer 2) LIFs. To understand what the resonant peak of the layer 3 neuron

depends on, we repeated the simulation while varying layer 2 noise levels (independent noise

for every LIF). Increasing the noise of the layer 2 neurons (while keeping the noise of the out-

put neuron zero) yielded monotonically increasing firing rates of both layers (Fig 5J).

Fig 5. Resonance generated at the level of postsynaptic potentials can be inherited to the network level. (A) A LIF model neuron was driven by periodic

spike trains at various rates via an excitatory (AMPA-like) synapse that exhibited synaptic depression and facilitation. Threshold was set to a high value (Vth = 0
mV) to prevent spiking. Here and in B-C, σ = 0 mV. Left: After several spikes, the excitatory postsynaptic potentials (EPSPs) stabilize. Right: Traces shown at an

expanded time scale. The magnitude of the EPSPs is maximal at intermediate rates. (B) EPSP magnitude for the LIF with synaptic depression and facilitation,

measured over a wide range of presynaptic spike rates. Magnitude peaks at an intermediate frequency, corresponding to synaptic resonance. (C) Scaled EPSP

magnitude as a function of presynaptic spike rate for the LIF with synaptic depression and facilitation (black; same as in B). Scaled EPSP magnitudes for a

synaptic plasticity model only with depression (dotted line) correspond to an LPF. Scaled EPSP magnitudes for a model only with facilitation (dashed line) or a

model without synaptic plasticity (passive membrane; grey line) correspond to HPFs. (D) The LIF with synaptic resonance model neuron of panel A was

modified to allow spiking (Vth = -50 mV). Here and in E, σ = 0.05 mV; Ibias = 1.3 μA/cm2. Left: Spikes are generated predominantly at intermediate frequencies.

Right: The model exhibits spiking resonance. (E) Spiking fingerprint of the LIF with synaptic resonance model; conventions are the same as in Fig 2C. Spikes

are generated at a specific range of frequencies and phases, corresponding to spiking resonance. (F) Coherence as a function of noise level. Dashed line

indicates noise level of 0.05 mV, used in D-E. The resonant frequency (and coherence magnitude) shifts with increased noise. Spiking resonance is exhibited

for a wide range of noise levels. (G) A diverging-converging feedforward network of LIF neurons was constructed. The first layer included a single point

process neuron which fired a single spike at the peak of every cycle of a linear chirp (0–40 Hz over 20 s). The second layer included 50 identical LIF neurons

with synaptic depression and facilitation (as in D); all neurons received excitatory (AMPA-like) connections from the layer 1 neuron, and every neuron

received independent membrane potential noise. All layer 2 neurons received bias current of Ibias = 1.2 μA/cm2. The third layer included a single LIF without

short term synaptic dynamics. (H) Neurons in the second layer spike at a wide range of input presynaptic spike rates, whereas the third layer (output) neuron

spikes at a narrower range of presynaptic spike rates. (I) Second layer spike trains exhibit spiking resonance (thick black trace, averaged coherence over all

inner-layer trains), consistent with noisy inheritance from the PSP level (as in F). The output spike train exhibits narrow-band network resonance (red trace).

(J) The feedforward network was constructed and stimulated as in G, with different noise levels (σ = 0–2 mV at 0.025 mV increments) received by layer 2 LIF

neurons while keeping the noise received by the output (layer 3) neuron zero. The black curve shows the mean±SEM firing rate of the 50 layer 2 neurons. The

vertical dashed line corresponds to the frequency for which layer 2 coherence peaks (K, left). (K) Peak coherence is observed for intermediate noise levels.

Coherence between the input spike train (blue train in H) and the spike train of every layer 2 neuron was estimated and averaged over all 50 layer 2 neurons.

The process was repeated for every noise level, and the coherence vectors are shown as rows in the left matrix (blue/red colors correspond to 0/0.26 coherence).

The same process was carried out for the layer 3 neuron (right matrix; blue/red colors corresponding to 0/0.74 coherence). The white dashed lines correspond

to the noise level and frequency for which layer 2 coherence peaks (0.3). (L) For every noise level, the peak layer 2 coherence magnitude (left) and the frequency

for which the coherence peaks (right) are plotted. Layer 3 coherence magnitude is higher than layer 2 coherence for all noise levels. Layer 2 and layer 3

coherence peak at intermediate noise levels, exhibiting stochastic resonance. The resonant frequency of layer 3 is lower than the resonant frequency of layer 2 at

every noise level, including at the stochastic resonant frequency (25 Hz for layer 2).

https://doi.org/10.1371/journal.pcbi.1010364.g005
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However, the coherence of both layers did not increase monotonically but rather peaked at an

intermediate noise level (Fig 5K), exhibiting stochastic resonance [32,33,36]. Specifically, the

maximal layer 2 coherence was obtained at a noise level of σ = 0.48 mV (σ = 0.25 mV was used

in Fig 5G–5I). At that noise level, layer 2 coherence peaked (0.3) at a resonant frequency of 25

Hz, whereas layer 3 exhibited higher magnitude coherence (0.72) at a frequency of 17 Hz (Fig

R5L). Thus, stochastic resonance, defined as an optimal response to an input at an intermedi-

ate noise level, can be observed in parallel to resonance, defined as a peak of the response at an

intermediate frequency.

Resonance can be generated intrinsically at the network level via excitatory

inputs

In principle, the frequency-dependent mechanisms (low- and high-pass filters) do not have to

occur at the same level of organization. One example is spiking resonance in LIF, in which we

identified the LPF as the membrane capacitance and leak current, and the HPF as spike discre-

tization (Fig 3B–3E). To determine if frequency-dependent mechanisms across levels of orga-

nization can yield network resonance, we combined low-pass filtering at the PSP level and

HPF at the spiking level. The PSP-level LPF was realized as synaptic depression (Fig 6A; cf. Fig

5C, dotted line). The HPF at the spiking level was manifested as spike discretization (grey

curves in Fig 6B, right). When driven with presynaptic spike trains of various rates, the LIF

with synaptic depression model exhibited spiking resonance (Fig 6B, black lines), with a reso-

nant frequency around 7–8 Hz (Fig 6B–6C). Resonance was maintained in this model over a

range of noise values, with a relatively small frequency shift (Fig 6D). We denote this phenom-

enon as “intrinsic network resonance”: resonance exhibited at the network level, in the lack of

resonance observable at any other level of organization (around the frequency of interest). As

in the previous three cases of network resonance (Figs 2F–2H, 4, and 5G–5I), resonance is

observed at the spiking level, in postsynaptic neurons. Yet in contrast to the cases of inherited

network resonance, in the present case, no other level of organization exhibits resonance

around the frequency of interest.

Resonance inherited to the network level can be uncovered via inhibitory

inputs

Previous work showed that resonance can be observed in the spiking of postsynaptic neurons,

i.e., at the network level, even when the synaptic connections are inhibitory [22]. When an iso-

lated (subthreshold resonant) pyramidal cell (PYR), modeled with h-current and full spiking

dynamics, was driven directly by a periodic input current, spiking resonance was generated

(around 10 Hz; Fig 7A). This corresponds to resonance inherited from the level of membrane

potential fluctuations, as observed in a simpler model neuron (Fig 2). We connected an I-cell,

modeled with full spiking dynamics, to a resonant PYR (modeled as in Fig 7A) via an inhibi-

tory (GABAA-like) synapse, without feedback. When only the I-cell in the two-cell model was

driven, the PYR exhibited spiking resonance (around 8 Hz; Fig 7B). This network resonance is

inherited from the PYR spiking resonance (Fig 7A), which was in turn inherited from reso-

nance of the membrane potential fluctuations. Indeed, spike generation in the PYR required

Ih. However, the IPSP-induced PYR spikes occurred at the troughs of the input given to the I-

cell (Fig 7B, bottom right), at an opposite phase compared to direct activation (Fig 7A, bot-

tom right). This is consistent with in vivo observations [22] and contrasts with all other cases

studied so far (membrane potential: Fig 2C; spiking: Fig 3C, 3G; PSP: Fig 5E; EPSP network:

Fig 6C), in which the resonant spikes occurred around the peak of the input cycle. Thus, net-

work resonance can also be inherited from the single neuron level using synaptic inhibition.
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In the model of inhibition-induced network resonance (Fig 7B), the frequency-dependent

mechanisms were inherited from the single-cell properties. Specifically, the PYR h-current

acted as a HPF. Although the model exhibited resonance, spikes were also generated below

and above the resonant frequency (Fig 7B). To construct a model of inhibition-induced net-

work resonance that does not generate PYR spiking at low frequencies, we added a HPF at the

level of the I-cell (Fig 8). This was done by modeling gamma-band resonance (previously

observed in vitro; [8]) at the level of membrane potential fluctuations, by adding a resonant

(M-) current to the I-cell. When driven with a periodic input current of low amplitude, the

Fig 6. Intrinsic network resonance can be generated by combining frequency-dependent mechanisms at the level of

postsynaptic potentials and at the spiking level. (A) EPSP magnitude for a LIF with synaptic depression (high threshold,

Vth = 0 mV) as a function of presynaptic spike rate. Here and in B-C, σ = 0.05 mV. Without synaptic facilitation, EPSP

magnitude is highest at the lowest rates, corresponding to a synaptic LPF. (B) The LIF with synaptic depression of panel A

was modified to allow spiking (Vth = -50 mV). Left: Spike rate is highest at intermediate frequencies (e.g., 10 Hz). At higher

frequencies (e.g., 20 Hz), spikes following the first spike are depressed. Right: In the LIF with synaptic depression model, the

combination of the synaptic LPF (panel A) and the spike discretization HPF (grey line) yields spiking resonance (black line).

Without synaptic depression, resonance disappears (grey line). (C) Spiking fingerprint of the LIF with synaptic depression

model; conventions are the same as in Fig 2C. Spikes are generated at a specific range of frequencies and phases,

corresponding to network resonance. (D) Coherence as a function of noise level. Dashed line indicates noise level of 0.05

mV, used in B-C. With increased noise, the resonant frequency shifts and coherence magnitude decreases. Spiking

resonance is exhibited for a wide range of noise levels.

https://doi.org/10.1371/journal.pcbi.1010364.g006

Fig 7. Inhibition-induced network resonance can be inherited from the level of membrane potential fluctuations. (A) A PYR model neuron, with h-

current and full spiking dynamics, was driven by a constant-amplitude periodic current in the form of a linear chirp (0–40 Hz, 20 s; Ain
e = 0.2 μA/cm2). Top:

Membrane potential response during a single trial. Center: Raster plots from 20 independent trials. Bottom: Quantification of spiking resonance. As in the

simpler model (Fig 2), the LPF and HPF correspond to RC (membrane capacitance and leak current) and the h-current, respectively. PYR spikes are generated

around the peak of the input cycles in a narrow frequency band around 10 Hz, exhibiting spiking resonance. (B) The PYR model neuron of panel A was

connected via an inhibitory (GABAA-like) synapse to a presynaptic I-cell (INT). Only the INT was driven by a constant amplitude periodic current (Ain
i =

0.5 μA/cm2). Other possible synaptic connections were kept at zero (light grey lines in the cartoon, top right), isolating the contribution of feedforward

inhibition. The PYR spikes after a series of INT spikes, around the trough of the input cycles given to the INT. The narrow-band PYR spiking exhibits IPSP-

induced (network) resonance. All conventions are the same as in panel A.

https://doi.org/10.1371/journal.pcbi.1010364.g007
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impedance profile of an isolated gamma-resonant interneuron (γINT) exhibited a peak

(around 40 Hz; Fig 8A, right panels). When input amplitude was increased, the resonance gen-

erated at the level of membrane potential fluctuations was inherited to the spiking level. The

peak coherence occurred at similar frequencies as resonance of membrane potential fluctua-

tions (around 40 Hz), and the γINT spikes occurred around the input peak (zero phase; Fig

8B). Furthermore, when the γINT was connected to the PYR (modeled as in Fig 7A) via a sin-

gle inhibitory synapse (as in Fig 7B), the PYR exhibited spiking resonance (around 10 Hz; Fig

8C). However, the phase of the PYR spikes (relative to the current input applied to the I-cell)

differed in the two models of inhibition-induced network resonance (compare fingerprints in

Fig 8. Inhibition-induced network resonance is sharpened by presynaptic high-pass filtering. (A) A gamma-interneuron (γINT) model neuron, with M-

current and full spiking dynamics, was driven by constant amplitude periodic current in the form of a linear chirp (0–80 Hz, 10 s; Ain
i = 0.5 μA/cm2). The

impedance profile (second subpanel from left) shows a wide peak centered around 40 Hz, exhibiting resonance of the membrane potential fluctuations. (B) The

γINT model neuron of panel A was driven by a higher-amplitude periodic current (0–80 Hz, 10 s; Ain
i = 0.9 μA/cm2). Spikes are generated at the peaks of the

input cycles, at a frequency band centered around 40 Hz (30–50 Hz). Thus, the γINT model neuron exhibits spiking resonance, inherited from the level of

membrane potential fluctuations. Far right: Coherence as a function of input amplitude; horizontal dashed line indicates Ain
i = 0.9 μA/cm2. At higher

amplitudes, the spiking bandwidth increases. (C) The γINT model of panel A was connected, via an inhibitory (GABAA-like) synapse, to a PYR (as in Fig 7B),

and driven by a constant amplitude linear chirp (0–40 Hz, 20 s; Ain
i = 2.1 μA/cm2). Top: Membrane potentials during a single trial. As in Fig 7B, PYR spikes are

generated after γINT spikes. However, the γINT spikes occur at higher input frequencies than the INT spikes, sharpening the PYR spiking resonance. Center:
Raster plots of the PYR spikes from 20 independent trials. Right: Quantification of the IPSP-induced network resonance.

https://doi.org/10.1371/journal.pcbi.1010364.g008
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Figs 7B and 8C). Furthermore, in the γINT network model, the produced PYR spikes were

confined to the resonant frequency.

Discussion

Routes to network resonance

In this work, we tested the hypothesis that resonance in networks of spiking neurons is neces-

sarily inherited from resonance at lower levels of organization. From electric circuit theory it is

clear that one can construct a macro-circuit consisting of multiple embedded subcircuits, each

being able to produce resonance on its own. However, neuronal networks are naturally

evolved, highly nonlinear electric circuits which may not have an intrinsic resonance-generat-

ing property. This is primarily because the neuronal building blocks that determine the fre-

quency-dependent properties (e.g., positive and negative feedback effects, history-dependent

processes) rely on different biological substrates at different levels of organization (e.g., reso-

nant and amplifying ionic currents, excitation and inhibition, synaptic depression and

facilitation).

Examining four levels of neuronal organization and a number of representative case stud-

ies, we found that resonance can either be inherited from one level to another, or be generated

independently at each and every level. In networks of spiking neurons, resonance can be gen-

erated directly at the network level. We showed that it is possible for a given system to display

resonance at one level of organization–membrane potential fluctuations, postsynaptic poten-

tials, single neuron spiking, or network–but not in others. Spiking resonance and resonance of

postsynaptic potentials are not necessarily accompanied by resonance of membrane potential

fluctuations, and network resonance can be generated without resonance at any other level of

organization. Thus, the mechanisms that can generate neuronal resonance at different levels of

organization are distinct (Fig 9, center). A direct implication of these observations is that

when a system presents resonance at multiple levels of organization, these can be derived from

either similar (inherited) or independent mechanisms. A second direct implication is that neu-

ronal networks in different brain structures may exhibit qualitatively similar resonant proper-

ties by disparate mechanisms.

General framework for nonlinear decomposition of resonance

Mechanistic studies aim to provide explanations of a given phenomenon in terms of a number

of constituent building blocks whose choice depends on both the phenomenon and the desired

level of explanation. For neuronal systems, there are a number of available sets of building

blocks, but not all of them are appropriate for the investigation of resonance across levels of

neuronal organization. The biophysical explanation, in terms of the ionic currents of the par-

ticipating neurons, synaptic currents, short-term plasticity and other biological components,

becomes extremely complex for larger networks. The same occurs for the dynamical systems

explanation in terms of nonlinearities, time scales, and vector fields. Circuit building blocks

such as positive and negative feedback loops are applicable to some, but not all levels of neuro-

nal organization. For example, while subthreshold resonance results from negative feedback

interactions between the membrane potential and restorative ionic currents, synaptic reso-

nance results from history-dependent mechanisms.

Our results support the hypothesis that the set of LPFs and HPFs are appropriate building

blocks to explain the generation of resonance (BPFs) and that this approach can be used irre-

spective of the level of organization, and across levels of organization. We further hypothesize

that this approach is universal. In other words, to understand the generation of resonance at a

given level of organization, one must identify the constituent LPFs and HPFs. From this
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perspective, the decomposition of BPFs into LPFs and HPFs is not a mere description of reso-

nance, but rather an explanatory theoretical tool to understand resonance in terms of struc-

tural and functional building blocks. A deeper understanding might be achieved by linking

filters with specific sets of building blocks (Fig 9). Provided that the technology exists, the fil-

ters may be identified experimentally by making the necessary perturbations. Therefore,

understanding the generation of LPFs and HPFs in terms of the neuronal substrates contrib-

utes to the understanding of the biophysical and dynamic mechanisms underlying the genera-

tion of resonance.

The proposed LPF-HPF framework has the advantage of incorporating, within a single con-

ceptual umbrella, disparate processes such as negative feedback processes (capacitive, leak, res-

onant, and amplifying currents), history-dependent processes (synaptic depression and

facilitation), and spike discretization. It is not conceived as an analysis tool, but rather serves as

a conceptual tool in which mechanistic models can be designed and their predictions tested by

comparing modeling results to data. Further research is needed to explicitly integrate amplifi-

cation in this framework, to establish a general LPF-HPF amplification framework for neuro-

nal systems, and to identify the appropriate filters and amplification processes. Additional

research is also needed to investigate the consequences of the interplay of multiple filters (e.g.,

two LPFs and one HPF) and across levels of organization, and to establish whether multiplici-

ties produce degeneracies or richer patterns (e.g., anti-resonances).

The identification of the LPF and HPF constituting a given BPF is not a straightforward

process, primarily due to two factors: the nonlinearities involved, which are typically strong;

and the qualitatively different biophysical components operating at different levels of

Fig 9. Network resonance can be generated by interacting low- and high-pass filters across levels of neuronal organization. (A) Frequency-dependent

building blocks include high-pass filters (HPF, top) and low-pass filters (LPF, bottom). HPFs include inductive/resonant ionic currents (Ih, Figs 2, 7, 8;, IM, Fig

8), acting at the level of membrane potential fluctuations; spike discretization and calcium-dependent spiking (Figs 3, 4, 6); and synaptic facilitation and

temporal summation (Fig 5). LPFs include membrane capacitance and leak current (Figs 2–4, 7, 8), and synaptic depression (Figs 5, 6). (B) The frequency-

dependent building blocks (filters) can interact either within the same level of organization (e.g., top row: membrane potential fluctuations; third row:

postsynaptic potentials) or across levels of organization (e.g., second and fourth rows). (C) Interaction of HPF and LPF (within or across levels of organization)

can generate resonance. If the interaction is within the same level of organization (e.g., membrane potential fluctuations), resonance can be generated at that

level, and may (under certain conditions) be inherited to the network level (top pathway). Alternatively, network resonance may be generated intrinsically, by

HPF and LPF across levels of organization (bottom pathway).

https://doi.org/10.1371/journal.pcbi.1010364.g009
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organization. In linear systems, for which analytical calculations are possible, the BPFs charac-

terizing the presence of resonance can be generated by the frequency domain multiplication of

LPFs and HPFs. These filters have been identified in simple neuronal systems (e.g., systems

that can be described by RLC circuits), but it is not a-priori clear whether and how neuronal

BPFs in general can be decomposed into LPFs and HPFs. Under rather general circumstances,

for nonlinear subthreshold resonance one can extend the linear approach (in the time domain)

and obtain a description of the LPF by disrupting the negative feedback from the recovery vari-

able, and the HPF by neglecting the capacitive current. In contrast, the short-term plasticity-

mediated synaptic BPFs that compose the synaptic resonance model are, by construction, the

product of a depression LPF and a facilitation HPF in the time domain (not in the frequency

domain), and are thus not amenable to linear decomposition.

In general, there are at least two possible ways to generate a resonant response at a given

level of organization: by using an LPF and a HPF at the same level of organization, or at differ-

ent levels (Fig 9, center). In the case of resonance of membrane potential fluctuations, we used

a subthreshold LPF (passive membrane) and a subthreshold HPF (Ih; Fig 2; [31]). Similarly,

for synaptic resonance both the LPF (synaptic depression) and the HPF (facilitation) belonged

to the same level of organization (Fig 5; [14]). However, for the generation of spiking reso-

nance independently of resonance at any other level, we identified a mixed approach (Fig 3).

While the HPF was spike-dependent (due to spike discretization or calcium dynamics), the

LPF was inherited from the subthreshold domain (passive membrane). This provides a mecha-

nistic explanation of the classical results of spiking resonance in LIF neurons [26,27], beyond

the limit of weak inputs [28]. A mixed approach was also used for generating intrinsic network

resonance (Fig 6): synaptic depression (LPF) was combined with spike discretization (HPF) to

generate resonance in a postsynaptic target.

Experimental and functional implications

Network resonance has been described theoretically [16,18–21]and observed experimentally

[22,40,41] in several model systems. Here, we distinguished between two types of network res-

onance: “inherited” network resonance, and “intrinsic” network resonance. In inherited net-

work resonance, frequency-dependent mechanisms (LPF and HPF) occur at a level of

organization other than the network. Resonance can be observed at that level of organization,

and may be inherited to the network level under specific conditions (e.g., Fig 2). Network-

level processes may modulate (e.g., amplify or attenuate) the inherited resonance, but their

absence does not disrupt the inherited resonance. In contrast, LPFs and HPFs that occur at

possibly distinct non-network levels of organization can generate intrinsic network resonance

(e.g., Fig 6), in the lack of resonance observable at any other level of organization. To the best

of our knowledge, intrinsic network resonance has yet to be demonstrated experimentally.

Inhibition-induced network resonance required that Ih-mediated rebound spiking in pyra-

midal cells [42] interacts with some form of HPF. Previously, depression of the inhibitory syn-

apses (on the PYR) and interaction with a third type of cell (an oriens-lacunosum moleculare

[OLM] cell) were suggested as HPFs [22]. Here, we considered two other mechanisms. First,

we found that the PYR h-current itself yields a sufficient HPF for generating resonance in the

IPSP-driven PYR. Thus, inhibition-induced network resonance can be inherited. Second, we

found that the addition of a second HPF, in the form of gamma resonance in the presynaptic

INT [43], sharpens the IPSP-induced PYR spiking resonance. Gamma resonance has been

observed in computational models [16,21], in INT in vitro [8], and in multi-unit activity in

vivo [41]. However, whether gamma resonance in INT actually occurs in vivo and sharpens

theta-band resonance in PYR in vivo remains to be determined. Together, the present results
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suggest that although not necessary, frequency-modulating mechanisms at multiple levels of

organization can contribute to the emergence of inhibition-induced network resonance.

Network resonance can be both intrinsic and inherited, and inherited network resonance

can be derived from different levels of organization. By measuring only cycle-averaged firing

rate resonance, it is impossible to determine the specific phase of the spiking response relative

to a periodic input. However, using spike timing resonance and the fingerprint map of reso-

nant neurons, different LPF and HPF modules that may underlie the resonance mechanism

can be contrasted. One experimentally-testable prediction is that in recurrent excitatory net-

works, spiking resonance of directly-activated PYR will exhibit an earlier phase fingerprint,

compared to the fingerprint of spikes generated via postsynaptic potentials which may be

delayed in phase (Figs 4B and 4C, 6C). Another experimentally-testable prediction is that in

inhibition-induced resonance, PYR phase mediated by γINT would be later (Fig 8C), com-

pared to PYR phase without the involvement of γINT (Fig 7B). Thus, in real neuronal net-

works driven by periodic inputs, spike timing resonance, quantified by spike phase and

fingerprinting, may be used to dissect the frequency-dependent mechanisms underlying

resonance.

Previous work suggested that resonance can optimize learning [44] and favor inter-neuronal

communication [21]. We found that multiple routes can lead to network resonance. Thus, a sin-

gle network could multiplex information from multiple sources. Multiplexing can occur at dif-

ferent resonant frequencies. Furthermore, since different types of network resonance exhibit

different phases, multiplexing can also occur at different phases of the same frequency band.

Related phenomena and future directions

We focused on resonance, defined as the maximal response of a system to periodic input in a

limited frequency band, and left out the investigation of the related phenomenon of phaso-

nance, defined as a zero-phase response to periodic inputs. Indeed, previous work has shown

that frequency modulation of spike phase is possible using a LIF model with spike frequency

adaptation provided by slower feedback, e.g., an outward calcium-activated potassium current

[45]. Notably the calcium current used in the previous work (to show phasonance) provides

subthreshold negative feedback, while the calcium current used in the calcium-LIF model (to

show resonance; Fig 3F–3H) provides a suprathreshold positive feedback. For linear systems,

phasonance (measured using the impedance phase) and resonance (measured using the

impedance amplitude) can co-occur [11, 12]. However, phasonance does not have to accom-

pany resonance (e.g., Figs 5E and 8C), and when the two phenomena do co-occur, the reso-

nant and phasonant frequencies do not necessarily coincide (they do for the case of the

harmonic oscillator; [12]). As our results show, spiking resonance may be accompanied by

spiking phasonance (Fig 3BC). In fact, spiking resonance and phasonance may be inherited

from the subthreshold regime (Fig 2BC) or be generated at the spiking level (e.g., in LIF; Fig

3BC).

To address the main question of the paper we relied on a number of case studies. Further

work is required to research general conditions under which resonance may be communicated

from one level of organization to another, or generated independently at each level of organi-

zation. Future work should also consider the effects of multiple ionic currents in single neu-

rons with possible heterogeneous spatial or compartmental distributions, the effects of

interacting synaptic currents with different functions (excitation, inhibition), the effects of sep-

arate timescales and of short-term dynamic properties, and network topology effects. Addi-

tionally, future studies should consider scenarios in which multiple resonances interact within

and across levels of organization.
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Conclusion

We have presented several novel computational models of representative scenarios, and have

rejected the hypothesis that network resonance requires resonance at another level. While

doing so, we set the infrastructure for a theoretical framework for investigating the mecha-

nisms underlying the generation of neuronal network resonance, taking into account the inter-

play of the constitutive nonlinear properties of the participating neurons, synaptic

connectivity, and network topology. This framework will enable studies of neuronal networks

where the interactions between periodic inputs, currents, and network effects are important

[46–48], different networks entrain each other [49,50], and/or the precise coordination

between periodic input and spiking output are enhanced or disrupted [51–53].

Materials and methods

Models and numerical methods

We used biophysical (conductance-based) models, following the Hodgkin-Huxley formalism

[54,55]. Models consisted of a set of coupled ordinary differential equations. A detailed

description of the different models used is provided below. All numerical simulations were

carried out using custom code written in MATLAB (The Mathworks, Natick, MA). Numerical

integration was done using the explicit second-order Runge-Kutta endpoint (modified Euler)

method [56] with integration time step dt = 0.1 ms (Figs 1–6) or dt = 0.025 ms (Figs 7–8) and

simulation duration of T s. As current input, we used sinusoids of a single frequency, of the

form

IinðtÞ ¼ Ibias þ Ain sinð2pftÞ ð1Þ

or a chirp [6] linear in f of the form

Iin tð Þ ¼ Ibias þ Ain cos pþ 2pf0t þ pðf1 � f0Þ
t2

T

� �

ð2Þ

Where Ibias is a time-independent (DC) bias current and Ain is the amplitude of the time-

dependent (AC) periodic input. In the case of sinusoids of a single frequency f, input frequency

f was typically varied from 1 Hz to 40 Hz at 1 Hz increments, and T = 3 s. For linear chirps, we

typically used f0 = 0 Hz and f1 = 40 Hz with T = 20 s.

Model for subthreshold resonance

To model resonance originating at the level of membrane potential fluctuations (Fig 2A–2E),

we used a two-dimensional conductance-based model. Thus, the only ionic currents were per-

sistent sodium with instantaneous activation (INa,p), and h-current (Ih) with voltage-dependent

dynamics. In this model, low-pass filtering is induced by the membrane time constant (C/gL),

high-pass filtering is induced by Ih and leak current, and amplification is provided by INa,p.

The model equations were:

C
dV
dt
¼ Iin tð Þ � gL V � ELð Þ � gpp1 Vð Þ V � ENað Þ � ghr V � Ehð Þ þ gNZ tð Þ ð3Þ

dr
dt
¼

r1ðVÞ � r
tr

ð4Þ

Membrane potential variability, which may stem from many unknown sources, was mod-

eled by an additive white noise term, generated by random sampling from a zero-mean
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Gaussian distribution η(t)~N(0,σ), multiplied by a constant conductance, gN = 1 mS/cm2. The

Ih time constant τr was assumed to be voltage-independent. The voltage-dependent activation/

inactivation curves of the Ih and INa,p gating variables are given by:

p1 Vð Þ ¼
1

1þ e
� ðVþ38Þ

6:5

ð5Þ

r1 Vð Þ ¼
1

1þ eVþ79:2
9:78

ð6Þ

To model a passive membrane (Fig 2A, dotted line), we set the conductance of the persis-

tent sodium (gp) and the h- (gh) currents to zero. To model a HPF (Fig 2A, dashed line), we

set gp to zero and reduced C to 0.1 μF/cm2. In all other cases, the full model was used.

Spike waveforms were not modeled explicitly, but a spike was said to occur whenever the

membrane potential crossed a threshold value, Vth. Thus, the 2D model was augmented with

threshold spiking:

if V > Vth then V  Vreset ð7Þ

Whenever a spike occurred, the membrane potential V was held constant at Vpeak for Tspike

before being reset to Vreset. Following [12,57], the specific parameters values used were:

C = 1 μF/cm2; gL = 0.1 mS/cm2; EL = -65 mV; gp = 0.1 mS/cm2; ENa = 55 mV; gh = 1 mS/cm2; Eh
= -20 mV; τr = 100 ms; Vth = -50 mV; Vreset = -70 mV; Vpeak = 50 mV; Tspike = 1 ms; σ = 0 mV
(Fig 2E: σ = 0–2 mV); Ibias = -1.85 μA/cm2; and Ain = 0.15 μA/cm2 (Fig 2A: Ain = 0.05 μA/cm2;

Fig 2D: Ain = 0–1 μA/cm2).

Model of an excitatory-inhibitory network

To model inheritance of resonance generated at the level of membrane potential fluctuations

by INa,p+Ih model neurons to postsynaptic targets (Fig 2F–2G), we generated a network of

conductance-based E- and I-cells with all-to-all connectivity. All cells followed

C
dV
dt
¼ Iin tð Þ � gL V � ELð Þ � Iionic � Isynaptic þ gNZ tð Þ ð8Þ

if V > Vth then V  Vreset ð9Þ

The E-cells contained INa,p and Ih, and thus Iionic ¼ gpp1ðVÞðV � ENaÞ þ ghrðV � EhÞ with r
obeying Eq 4. The I-cells were modeled as leaky integrate-and-fire (LIF) neurons, and thus Iio-
nic = 0. Synaptic connections were modeled as in [55,58]. For the e’th E-cell, the total synaptic

current was

Isynaptic;e ¼
PNe

j¼1
geeSejðVe � EseÞ þ

PNi
k¼1

geiSekðVe � EsiÞ ð10Þ

Where Ne (Ni) is the number of E-cells (I-cells). The notation gej indicates the maximal syn-

aptic conductance from presynaptic E-cell j to postsynaptic E-cell e. All excitatory-to-excit-

atory synapses had the same maximal conductance values gee and reversal potentials Ese,
regardless of the presynaptic neuron. All inhibitory-to-excitatory synapses had the same maxi-

mal conductance values gei and reversal potentials Esi, regardless of the presynaptic neuron. All

synaptic activation variables corresponding to the same presynaptic neuron had the same

dynamics, regardless of the postsynaptic neuron (Sej = Sj, Sek = Sk, 8e). For the i’th I-cell, the
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total synaptic current was modeled by

Isynaptic;i ¼
PNe

j¼1
gieSijðVi � EseÞ þ

PNi
k¼1

giiSikðVi � EsiÞ ð11Þ

All excitatory-to-inhibitory synapses had the same maximal conductance values gie and

reversal potentials Ese. All inhibitory-to-inhibitory synapses had the same maximal conduc-

tance values gii and reversal potentials Esi. All synaptic activation variables corresponding to

the same presynaptic neuron had the same dynamics (Sij = Sj, Sik = Sk, 8i).
For an excitatory/inhibitory presynaptic neuron, the dynamics of the corresponding synap-

tic variable (Se/Si) depended on the presynaptic membrane potential (Ve/Vi) and the synaptic

rise and decay time constants, following:

dSe
dt
¼ H Veð Þ

ð1 � SeÞ
ter

�
Se
ted

ð12Þ

dSi
dt
¼ H Við Þ

ð1 � SiÞ
tir

�
Si
tid

ð13Þ

HðVÞ ¼ ð1þ tanhðV=4ÞÞ=2 ð14Þ

Parameter values followed [58]. All parameters values used are detailed in Table 1.

Models for spiking resonance

To model spiking resonance generated by an isolated LIF (Fig 3A–3E), we used

C
dV
dt
¼ Iin tð Þ � gL V � ELð Þ þ gNZ tð Þ ð15Þ

if V > Vth then V  Vreset ð16Þ

with the following parameter values: C = 1 μF/cm2; gL = 0.1 mS/cm2; EL = -60 mV; Vth = -50
mV; Vreset = -60 mV; Vpeak = 50 mV; Tspike = 1 ms; σ = 0 mV (Fig 3E: σ = 0–0.3 mV); Ibias =
0.9 μA/cm2; and Ain = 0.05–0.3 μA/cm2.

To model spiking resonance generated directly at the spiking level with a sharper HPF than

the isolated LIF (Eqs 15–16), we modified the LIF model to include a spike-dependent calcium

current (Fig 3F–3H). The model equations were:

C
dV
dt
¼ Iin tð Þ � gL V � ELð Þ � gCK V � ECað Þ þ gNZ tð Þ ð17Þ

dK
dt
¼

NCð1 � KÞ
tact

�
K
tinact

ð18Þ

dNC

dt
¼ �

NC

tdeact
ð19Þ

if V > Vth then
V  Vreset

NC  Nreset

ð20Þ

(

The purpose of constructing this model was to generate a spike-dependent HPF, in a system

that has an underlying subthreshold LPF. The physiological rationale is that following a spike,
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there is increased calcium influx, further increasing depolarization; this effectively reduces the

spiking threshold to current input at the same level. Thus, at another cycle of input that occurs

shortly after the first spike, there will be another spike–even if the current is insufficient to gen-

erate a spike without the calcium influx. However, if the next cycle occurs later, the intracellu-

lar calcium level will have already gone back to steady-state level.

In the model, the calcium gating variable K is limited to the [0,1] range and represents the

probability of the gate to be open. Once a spike occurs, NC is instantaneously reset to a non-

zero value (Nreset) and then slowly decays (with τdeact) towards zero. While NC is non-zero, the

gate opens slowly (i.e., K is activated towards 1 with τact/NC, and rapidly inactivates (decays to

zero with τinact). When activation is very fast or inactivation is very slow, the calcium conduc-

tance remains high long after a spike, providing additional depolarization at multiple current

input frequencies, generating spike bursts at every input cycle. When the activation is slow and

inactivation is fast, K remains relatively high only for a short time after a spike. The parameters

used favor the latter scenario. Specific parameter values were: C = 1 μF/cm2; gL = 0.5 mS/cm2;

EL = -60 mV; gC = 0.08 mS/cm2 (Fig 3H: gC = 0.04–0.12 mS/cm2); ECa = 100 mV; τact = 50 ms;

Table 1. Parameters used for modeling inheritance of resonance generated at the level of membrane potential

fluctuations (Fig 2F–2H).

Parameter Value Units Notes

C 1 μF/cm2

gL 0.1 mS/cm2

Vth -50 mV

EL
e -65 mV E-cells

gp 0.1 mS/cm2 E-cells

ENa 55 mV E-cells

gh 1 mS/cm2 E-cells

Eh -20 mV E-cells

τh 100 ms E-cells

Vreset
e -70 mV E-cells

Tspike
e 1 ms E-cells

EL
i -60 mV I-cells

Vreset
i -60 mV I-cells

Tspike
i 0.1 ms I-cells

τr
e 0.1 ms AMPA

τd
e 3 ms AMPA

Ee 0 mV AMPA

τr
i 0.3 ms GABAA

τd
i 9 ms GABAA

Ei -80 mV GABAA

gie 0.05 mS/cm2 E to I; Fig 2F: 1

gee 0 mS/cm2 E to E

gei 0 mS/cm2 I to E

gii 0.05 mS/cm2 I to I

σe 0.0125 mV E-cells

Ibias
e -1.85 μA/cm2 E-cells

Ain
e 0.14125 μA/cm2 Fig 2H: 0

σi 3 mV I-cells

Ibias
i -1 μA/cm2 I-cells

Ain
i 0 μA/cm2 Fig 2H: 2.26

https://doi.org/10.1371/journal.pcbi.1010364.t001
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τinact = 5 ms; τdeact = 70 ms; Vth = -50 mV; Vreset = -70 mV; Vpeak = 50 mV; Nreset = 0.1; σ = 0.001
mV; Ibias = -3 μA/cm2; and Ain = 8 μA/cm2.

To model network resonance inherited from resonance generated at the spiking level (Fig

4), we combined a set of LIF model neurons (Eq 15 and Eq 16) using the network formalism

described above (Eqs 8–14), with parameter values as detailed in Table 1.

Models for synaptic plasticity and resonance

To model resonance generated at the level of postsynaptic potentials (Fig 5), we used a LIF

model receiving a synaptic current with short term dynamics (synaptic facilitation and depres-

sion):

C
dV
dt
¼ Iin tð Þ � gL V � ELð Þ � gSSDF V � ESð Þ ð21Þ

dS
dt
¼ H Vpre

� � ð1 � SÞ
tr

�
S
td

ð22Þ

dD
dt
¼ � H Vpre

� � D
tresetðdÞ

þ
ð1 � DÞ
tdep

ð23Þ

dF
dt
¼ H Vpre

� � ð1 � FÞ
tresetðf Þ

�
F
tfac

ð24Þ

Table 2. Parameters used for modeling inheritance of spiking resonance generated by an isolated LIF (Fig 4).

Parameter Value Units Notes

C 1 μF/cm2

gL 0.1 mS/cm2

EL -60 mV

Vth -50 mV

Vreset -60 mV

Tspike 1 ms

τr
e 0.1 ms AMPA

τd
e 3 ms AMPA

Ee 0 mV AMPA

τr
i 0.3 ms GABAA

τd
i 9 ms GABAA

Ei -80 mV GABAA

gie 0.01 mS/cm2 E to I; Fig 4A: 1

gee 0 mS/cm2 E to E

gei 0 mS/cm2 I to E

gii 0.05 mS/cm2 I to I

σe 0.02 mV Fig 4C: 0.08

Fig 4DE: 0–0.3

Ibias
e 0.9 μA/cm2 E-cells

Ain
e 0.115 μA/cm2 E-cells

σi 2 mV I-cells

Ibias
i 0 μA/cm2 I-cells

Ain
i 0 μA/cm2 I-cells

https://doi.org/10.1371/journal.pcbi.1010364.t002
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The threshold spiking is defined by Eq 9 and the sigmoid activation function is as in Eq 14.

In Eqs 21–24, Vpre represents the membrane potential of the presynaptic neurons. To con-

struct the input Vpre, we generated a spike at each local maximum of a sinusoid function (Eq 1

or Eq 2). The presynaptic voltage was then defined as Vpre(t) = 50 mV if a spike occurred in the

last 1 ms; otherwise, Vpre(t) = -60 mV. Other specific parameter values used in Fig 5 were:

C = 1 μF/cm2; gL = 0.1 mS/cm2; EL = -65 mV; Vth = -50 mV (Fig 5A: Vth = 0 mV); Vreset = -70
mV; Tspike = 0.1 ms; τr = 0.1 ms; τd = 3 ms; gS = 0.175 mS/cm2; ES = 0 mV; τreset(d) = 0.1 ms; τdep
= 100 ms; τreset(f) = 0.2 ms; τfac = 300 ms; σ = 0.05 mV (Fig 5A–5C: σ = 0 mV; Fig 5F: σ = 0–0.3
mV); Ibias = 1.3 μA/cm2; and Ain = 0 μA/cm2.

To model synaptic depression, the synaptic variable S was multiplied by a factor D, limited

to the [0,1] range. After every spike, D slowly recovers towards its steady state value of 1, with

time constant τdep, which determines the time scale of depression (Eq 23). Since additional

spikes may occur during recovery, the process is history-dependent. To model synaptic facili-

tation, the synaptic variable S was multiplied by a factor F, also limited to the [0,1] range. The

dynamics of F follow the same principle as for depression (Eq 24), yet in an opposite direction:

during every spike, F rapidly increases towards 1; between spikes, F relaxes to zero with a

slower time constant τfac. Note that in principle, the synaptic variable S in Eq 22 is also history-

dependent, representing synaptic summation. However, the synaptic decay time constant τd
for the AMPA-like synapses used in Eq 22 is much smaller than the time constants used for

modeling depression.

To model the combined effect of depression and facilitation, the synaptic variable was mul-

tiplied by D and F. Together, the product DF represents the probability of presynaptic release.

We note that the depression model is similar to the one proposed by [59]. Previous models of

synaptic plasticity ([13, 60], attributed to Dayan, Abbott, and collaborators) included a discrete

(delta-function) rise of the depression and facilitation variables in response to each presynaptic

spike. The present synaptic plasticity models replace the step increase with a continuous sig-

moid function, as previously used for synaptic transmission models [55, 58].

To model short term synaptic dynamics in the lack of depression/facilitation (Fig 5C), we

set the corresponding variable to a constant (only facilitation: D = 1; only depression: F = 1).

To model inheritance of resonance generated at the level of postsynaptic potentials to post-

synaptic targets (Fig 5G–5L), we constructed a 3-layer diverging/converging feedforward net-

work. Synaptic conductance between layer 1 and layer 2 was gS = 0.2 mS/cm2. Neurons in the

second layer received Ibias = 1.2 μA/cm2 and independent noise (σ = 0.25 mV in Fig 5G–5I).

Synaptic conductance between layer 2 and layer 3 was gS = 0.12 mS/cm2; the single layer 3 neu-

ron received Ibias = 0 μA/cm2 and no additional noise.

To model EPSP-induced network resonance (Fig 6), we used the LIF model supplemented

with synaptic plasticity (Eqs 9, 14, 21–24), without facilitation (i.e., F = 1). Other parameter

values were the same as for generating resonance at the level of PSP (Fig 5), with Ibias = 1.2 μA/
cm2.

Models for inhibition-induced network resonance

To model IPSP-induced network resonance (Figs 7–8), we used a minimal network of conduc-

tance-based neurons of the Hodgkin-Huxley type with instantaneous activation of sodium

channels, consisting of an excitatory cell (a PYR) and an INT [58]. The PYR model included

dynamics on the membrane potential (Ve), sodium inactivation (h), delayed-rectifier potas-

sium (n), and the h-current gating variable (r; [9,61]), yielding a 4D system. In addition, the

model included synaptic input and noise. Denoting the membrane potential of the PYR by Ve
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and the membrane potential of the INT by Vi, the full model for the PYR reads

C
dVe

dt
¼ Iein tð Þ � geL Ve � Ee

L

� �
� geNahm1ðV

eÞ
3 Ve � Ee

Na

� �
� geKn

4 Ve � Ee
K

� �
� gehr Ve � Ee

h

� �

� geeSe Veð Þ Ve � Eeð Þ � geiSi V
ið Þ Ve � Eið Þ þ gNZ

e tð Þ ð25Þ

dh
dt
¼

h1ðVeÞ � h
thðVeÞ

ð26Þ

dn
dt
¼

n1ðVeÞ � n
tnðVeÞ

ð27Þ

dr
dt
¼

r1ðVeÞ � r
trðVeÞ

ð28Þ

The gating variables (x = h,m,n,r) had voltage-dependent time constants (τx) and steady-

state values (x1) as follows:

h1 Vð Þ ¼
0:128e

� ðVþ50Þ

18

0:128e
� ðVþ50Þ

18 þ 4

1þe
� ðVþ27Þ

5

; th Vð Þ ¼
1

0:128e
� ðVþ50Þ

18 þ 4

1þe
� ðVþ27Þ

5

ð29Þ

m1 Vð Þ ¼

0:32ðVþ54Þ

1� e
� ðVþ54Þ

4

0:32ðVþ54Þ

1� e
� ðVþ54Þ

4

�
0:28ðVþ27Þ

1� e
ðVþ27Þ

5

ð30Þ

n1 Vð Þ ¼

0:032ðVþ52Þ

1� e
� ðVþ52Þ

5

0:032ðVþ52Þ

1� e
� ðVþ52Þ

5

þ 0:5e
� ðVþ57Þ

40

; tn Vð Þ ¼
1

0:032ðVþ52Þ

1� e
� ðVþ52Þ

5

þ 0:5e
� ðVþ57Þ

40

ð31Þ

r1 Vð Þ ¼
1

1þ eVþ82:9
12:4

; tr Vð Þ ¼
136:36e0:033ðVþ75Þ

1þ e0:083ðVþ75Þ
ð32Þ

The PYR received excitatory input from itself, with maximal conductance gee, reversal

potential Ee, and synaptic variable Se; and inhibitory input from the INT, with maximal synap-

tic conductance gei, reversal potential Ei, and synaptic variable Si. The synaptic variables were

modeled as in Eqs 12–14.

For the basic component of the INT we used the Wang-Buzsáki model [62] describing the

dynamics of the membrane potential (Vi), sodium inactivation (h), and delayed-rectifier potas-

sium (n). To model gamma resonance in the INT (Fig 8), the model was extended to include a

non-inactivating potassium current (q) with dynamics similar to but faster than an M-current
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[63]. The full model also included synaptic currents and noise, and reads

C
dVi

dt
¼ Iiin tð Þ � giL Vi � Ei

L

� �
� giNahm1ðV

iÞ
3 Vi � Ei

Na

� �
� giKn

4 Vi � Ei
K

� �
� giMq Vi � Ei

K

� �

� gieSe Veð Þ Vi � Eeð Þ � giiSi V
ið Þ Vi � Eið Þ þ gNZ

i tð Þ ð33Þ

dh
dt
¼

h1ðViÞ � h
thðViÞ

ð34Þ

dn
dt
¼

n1ðViÞ � n
tnðViÞ

ð35Þ

dq
dt
¼

q1ðViÞ � q
tqðViÞ

ð36Þ

The gating variables for the INT (x = h,m,n,q) had voltage-dependent time constants (τx)
and steady-state values (x1) as follows

h1 Vð Þ ¼
0:07e

� ðVþ58Þ

20

0:07e
� ðVþ58Þ

20 þ 1

1þe
� ðVþ28Þ

10

; th Vð Þ ¼
0:2

0:07e
� ðVþ58Þ

20 þ 1

1þe
� ðVþ28Þ

10

ð37Þ

m1 Vð Þ ¼

0:2ðVþ35Þ

1� e
� ðVþ35Þ

10

0:2ðVþ35Þ

1� e
� ðVþ35Þ

10

þ 4e
� ðVþ60Þ

18

ð38Þ

n1 Vð Þ ¼

0:01ðVþ34Þ

1� e
� ðVþ34Þ

10

0:01ðVþ34Þ

1� e
� ðVþ34Þ

10

þ 0:125e
� ðVþ44Þ

80

; tn Vð Þ ¼
0:2

0:01ðVþ34Þ

1� e
� ðVþ34Þ

10

þ 0:125e
� ðVþ44Þ

80

ð39Þ

q1 Vð Þ ¼
1

1þ e
� ðVþ35Þ

10

; qr Vð Þ ¼
40

3:3eVþ35
20 þ e

� ðVþ35Þ

10

ð40Þ

The INT received excitatory input from the PYR, with maximal synaptic conductance gie;
and inhibitory input from itself, with maximal synaptic conductance gii.

For modeling the PYR in isolation (Fig 7A) or the γINT in isolation (Fig 8AB), all synaptic

conductance values were set to zero. For modeling the INT-to-PYR network without gamma

resonance on the INT (Fig 7B), gMi was set to zero. The full model was used for Fig 8C. Spe-

cific parameter values followed [58], and are detailed in Table 3.

Table 3. Parameters used for modeling IPSP-induced network resonance (Figs 7–8).

Parameter Value Units Notes

Ce 1 μF/cm2

gL
e 0.1 mS/cm2

EL
e -67 mV

gNa
e 100 mS/cm2

ENa
e 50 mV

(Continued)
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