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Correlated neural activity has been observed at various signal levels
(e.g., spike count, membrane potential, local field potential, EEG, fMRI
BOLD). Most of these signals can be considered as superpositions of
spike trains filtered by components of the neural system (synapses, mem-
branes) and the measurement process. It is largely unknown how the
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spike train correlation structure is altered by this filtering and what the
consequences for the dynamics of the system and for the interpretation
of measured correlations are. In this study, we focus on linearly filtered
spike trains and particularly consider correlations caused by overlapping
presynaptic neuron populations. We demonstrate that correlation func-
tions and statistical second-order measures like the variance, the covari-
ance, and the correlation coefficient generally exhibit a complex depen-
dence on the filter properties and the statistics of the presynaptic spike
trains. We point out that both contributions can play a significant role in
modulating the interaction strength between neurons or neuron popu-
lations. In many applications, the coherence allows a filter-independent
quantification of correlated activity. In different network models, we dis-
cuss the estimation of network connectivity from the high-frequency
coherence of simultaneous intracellular recordings of pairs of neurons.

1 Introduction

It has become a well-established belief among neuroscientists that funda-
mental knowledge of the function of the nervous system cannot be gained
by looking at its individual elements without simultaneously describing
their cooperative action. As a consequence, experimenters commonly per-
form parallel recordings of signals from different neurons, different neuron
populations, or different brain areas. The detection and quantification of co-
operative behavior in these data are frequently based on cross-correlation
measures like the classical cross-correlation function (Perkel, Gerstein, &
Moore, 1967b; Palm, Aertsen, & Gerstein, 1988), the joint peri stimulus
time histogram (Aertsen, Gerstein, Habib, & Palm, 1989), or Pearson’s cor-
relation coefficient. A plethora of experimental studies demonstrated the
existence of significant correlations in neuronal data at several signal levels,
for various brain areas and different species, with distinct spatial and tem-
poral characteristics and differently affected by varying stimulus conditions
(Aertsen et al., 1989; Zohary, Shadlen, & Newsome, 1994; Vaadia et al., 1995;
Lampl, Reichova, & Ferster, 1999; Bair, Zohary, & Newsome, 2001; Kohn &
Smith, 2005; Mukamel et al., 2005; Sakurai & Takahashi, 2006).

Though the functional relevance of correlated neural activity is still under
debate, the precise quantification and interpretation of neural correlations
are with no doubt important for different fields of neuroscience. Spike count
correlations, for example, have been thoroughly discussed in the context of
coding by population rate since here correlations essentially limit the signal-
to-noise ratio obtainable from a population of neurons (Zohary et al., 1994;
Shadlen & Newsome, 1998). Depending on the population size, even tiny
pairwise correlations can have substantial consequences for the precision of
the population-averaged signal. Several authors (Abeles, 1991; Bienenstock,
1995; Hayon, Abeles, & Lehmann, 2004) highlight the potential benefit of
correlated or synchronous spiking for the transmission and processing of



Neuronal Correlations 2135

neural information. To assess the significance of observed precise firing
patterns recurring in relation to the experimental protocol (Prut et al., 1998;
Riehle, Griin, Diesmann, & Aertsen, 1997), it is essential to gain insight into
the correlation structure already exhibited by network models serving as a
null hypothesis. Further, several experimental and theoretical studies point
out that the response of individual neurons can be effectively modulated by
changing the strength of correlation between the synaptic inputs (Salinas &
Sejnowski, 2000; Stroeve & Gielen, 2001; Rudolph & Destexhe, 2001; Oviedo
& Reyes, 2002; Mikula & Niebur, 2003; Kuhn, Aertsen, & Rotter, 2003).
Finally, the evaluation of the strength and the temporal characteristics of
neuronal correlations under different stimulus conditions can shed light
on details of the underlying network architecture (Aertsen et al., 1989; Bair
et al., 2001; Kohn & Smith, 2005; Yoshimura & Callaway, 2005; Yoshimura,
Dantzker, & Callaway, 2005). One of the major causes of correlated firing in
neural networks is common presynaptic input. Depending on the underly-
ing network architecture and the spatial organization of neurons, the size
of the pool of common presynaptic sources varies. It is therefore tempting
to relate identified common input correlations to network parameters. The
present study shows, however, that this is not a trivial task even under
simplifying assumptions like network homogeneity and stationarity.
Spiking activity is commonly considered as the computational basis of
neural processing. Spike data, however, are represented in many different
forms. The standard measure of spiking activity is the spike count: the num-
ber of observed spikes in a given time interval. Depending on the underly-
ing question and method, the lengths of the time interval strongly differ in
different studies and preparations. Measured spike trains, for example, are
spike count signals at small timescales in the millisecond or submillisecond
range. In many studies, spike counts are computed on larger timescales of
several milliseconds, seconds, or even minutes (Bair et al., 2001; Kohn &
Smith, 2005). Intracellular signals like membrane conductances, membrane
currents, or membrane potentials are frequently considered as (linearly or
nonlinearly) filtered versions of presynaptic spike signals. Similarly, ex-
tracellular local field potentials (LFP), electrocortico- (ECoG), or electroen-
cephalography (EEG) data indirectly reflect compound spiking activity of
neural populations. Even fMRI BOLD signals were shown to be related to
filtered spiking activity (Mukamel et al., 2005). Significant correlations in
neuronal data have been found at all signal levels: multi-unit spike activity
(MUA) (Eckhorn et al., 1988; Singer, Gray, Engel, & Konig, 1988; Gray &
Singer, 1989; Gray, Konig, Engel, & Singer, 1989; Gray, 1994), single-unit
spike activity (SUA) (Aertsen et al., 1989; Zohary et al., 1994; Vaadia et al.,
1995; Lampl et al., 1999; Sakurai & Takahashi, 2006), spike counts at dif-
ferent timescales (SUA) (Bair et al., 2001; Kohn & Smith, 2005), membrane
potentials (Lampl et al., 1999), LFP (Fries, Reynolds, Rorie, & Desimone,
2001; Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001; Mukamel
et al., 2005), EEG (Shaw, 1984; French & Beaumont, 1984; Weiss & Mueller,
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2003), and fMRI (Logothetis et al., 2001; Hasson, Nir, Levy, Fuhrmann, &
Malach, 2004; Mukamel et al., 2005). Several studies investigated the relation
between different types of signals using correlation measures (Logothetis
et al.,, 2001; Mukamel et al., 2005).

In this study, we address the question how traditional correlation mea-
sures are altered by linear filtering and emphasize the consequences for
the interpretation of those measures with respect to neural dynamics and
network structure. We show that the interplay between the spike train
auto- and cross-correlation structure and the filter properties determines the
magnitude and the temporal features of correlations observed by the exper-
imenter or the neural system itself. For illustration, consider the scenario in
Figure 1A. Here, two neurons i and j receive an excitatory input spike train
&.(t) from a common pool of presynaptic neurons and uncorrelated Pois-
sonian spike trains &, (f) from disjoint sources. The membrane potentials
x;(t), xj(t) of the two neurons i and j are modeled by low-pass filtering of
the compound spike trains &;/;(f) = & () + &4, with an exponential kernel
f(t) ~ exp(—t/tm) (see Figure 1B). The firing rates of the common and the
two disjoint spike trains are identical and do not change over time. Thus,
the ratio between the expected number of common spikes and the total
number of spikes in each process is 0.5. Nevertheless, the measured corre-
lation coefficient between the corresponding membrane potentials shown
in Figure 1B suddenly decreases from 0.5 to about 0.3 at time ¢ = 1024 ms
(see Figure 1C). The reason for this change in the correlation coefficient is
a modulation of the second-order interval statistics of the common source
&.(t). While its interspike interval distribution is exponential (Poisson pro-
cess) in the first half of the experiment (t < 1024 ms), interspike intervals
are drawn from a gamma distribution of order y =5 in the second part
(t > 1024 ms). The mean interspike interval is kept constant throughout the
whole simulation. The example points out that the correlation coefficient of
the filtered spike trains generally depends not only on the joint but also on
the marginal second-order statistics of the spike trains. In the course of this
article, we demonstrate that the coherence between the two signals at high
frequencies is under certain conditions insensitive to the latter and thus can
be used to measure the common-input strength in a more reliable way (see
Figure 1C).

In section 2 we show how the structure of the shot-noise correlation func-
tions and second-order measures like variance, covariance, and correlation
coefficient depend on the features of the chosen filter kernel and the spike
train statistics in general. In the remainder of the article, we apply these
results to the specific class of correlations arising from shared presynap-
tic sources in a basic common-input scenario (see section 3), in a stochastic
model of a small cortical volume (see section 4), and finally in a random net-
work of excitatory and inhibitory integrate-and-fire neurons (see section 5).

Preliminary results have been presented in abstract form (Tetzlaff,
Aertsen, & Diesmann, 2005).
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Figure 1: Time dependence of the membrane potential correlation coefficient in-
duced by a change in marginal spike train statistics. (A) Sketch of two correlated
model spike trains &(t), &;(t) constructed by merging spikes from a common
source &.(f) (gray bars) and two disjoint independent Poissonian sources & (t)
and &, (t) (black bars). During the first half of the simulation (¢ < 1024 ms), the
common source &(t) is modeled as a Poisson process (exponential interspike
interval distribution). In the second half (¢t > 1024 ms), its interspike intervals
are drawn from a gamma distribution of order y =5. The mean interspike
interval is kept constant at 20 ms throughout the simulation (rate of the com-
mon source v, = 5057}, rate of the disjoint sources v; = 50571, total simulation
time T = 2048 ms). The model spike trains &;(t) and &;(t) are considered as the
superpositions of excitatory inputs to two neurons i and j, respectively. (B)
Membrane potentials x;(t) and x;(t) obtained by low-pass filtering of the spike
trains &;(t) and &;(t) shown in A with an exponential kernel f(t) (time constant
Tm = 10ms). (C) Time-resolved correlation coefficient (gray curve) of the mem-
brane potentials and average high-frequency (0.3, ..., 1kHz) coherence (black
curve, see section 3.4) derived from power- and cross-spectra of the membrane
potentials measured in a sliding window of width 128 ms, both averaged over
500 realizations.

2 Shot-Noise Correlations in the Time and Frequency Domain

This section provides the formalism used in the remainder of this article
and derives the relations between point-process (spike train) correlations
and correlations of continuous signals resulting from the point processes by
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linear filtering (shot noise). The results presented in sections 2.1 and 2.2 are
generalizations of those outlined in for example Papoulis and Pillai (2002)
for the second-order marginal statistics of shot-noise signals.

2.1 Correlation Functions and Correlation Coefficient. In the
following, we focus on signals x;(t) constructed from spike trains &;(t) by
convolution () with some time-invariant kernel f;(t) (linear filtering):!

%) 1= (& % F)E) = / ds &(5) fi(t — ). @.1)

In the literature, x;(t) is commonly called shot noise if &;(t) is a realization of
a Poisson point process (Papoulis & Pillai, 2002). Here we adopt this term for
general point processes. Various measures in theoretical and experimental
neuroscience can be described as shot noise. The subthreshold membrane
potential of the linear integrate-and-fire neuron model with current-based
synapses (Tuckwell, 1988), for example, is simply the convolution of the
incoming spike trains with the postsynaptic potentials (PSPs). It has been
shown that population signals like local field potentials (LFPs), EEG, and
even fMRI (BOLD) signals exhibit a considerable correlation with linearly
filtered spike data (Logothetis et al., 2001; Mukamel et al., 2005). Also the
frequently used spike count measure, the number of spikes occurring in a
finite time window [¢, t 4+ &), is a shot-noise signal (see section 2.3).

We define the two-dimensional spike train and shot-noise correlation
functions ;;(t, t') := E[& (t)§;(t')] and c;; (¢, t') := E[x;(t)x;(t')], respectively,
as the expected? products of the two spike trains & (t), &;(t') and the two
shot-noise signals x;(t), x;(t') evaluated at times t and t' (Aertsen et al,,
1989). Offset subtraction, & (t) := & (t) — vi(t) and X (t) 1= x;(t) — (vi * fi)(#),
yields the corresponding covariance functions

Uij(t, ') := E[&(HE; (t)],
2.2)
gij(t, ) := E[x(H%; ()]

Here, v;(t) := E [&(t)] denotes the instantaneous rate of the process &(t).
According to equations 2.1 and 2.2, the shot-noise and spike train covari-
ance functions are linked by a two-dimensional convolution with the filter

! Throughout this article, we refer to a specific spike train realization & () as a sum over
delta functions centered at the spike times tik: Ei(t) =) 8(F— t{‘), The abstract quantity
“spike train” can be considered as being derived from the observable quantity “spike
count” x;' (t)—the number of spikes occurring in the time interval [¢, t + h)—by taking the
limit 7t — 0:&(t) = limy_.o $x'(t).

2Here, E [-] denotes an average over realizations (trials).
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kernels f;(t) and f;(t):
Gij(t,t) = [ ds [ ds' Jij(s, ") fi(t —s) fi(t' —&'). (2.3)

Assuming time invariance of 1/7,-]-(1‘, t') (second-order stationarity), we ob-
tain the one-dimensional shot-noise covariance function (Papoulis & Pillai,
2002),

8ij(v) 1= Cij(t, t + 1) = (Pij * ¢ij)(7), (2.4)

as a convolution between the one-dimensional spike train covariance
function,

Yij(r) i=gij(t t+ 1) = ¥3;(0,7) (Vi 1), (2.5)

and the (deterministic) cross-correlation ¢;;(z) := ffooo dt fi(t)f;(t 4+ 1) of
the two filter kernels f;(t) and f;(t).

The shot-noise covariance ¢;; (or variance for i = j) is obtained by
evaluating the covariance function &;;(z) at zero lag t = 0. According to
equation 2.4, this is the area of the product of the spike train covariance
function and the filter correlation function:

=y = [ d G-, 2.6)

For signals x;(t), x;(t) with finite variance, the covariance can be normal-
ized by the fluctuations of the individual signals to the scale [—1, 1]. This
defines Pearson’s correlation coefficient (Perkel, Gerstein, & Moore, 1967b;
Hollander & Wolfe, 1999; Feller, 1971):

_ S0 dt Wi ()i (—t)
VEE I At T [, A () (E)

rij (2.7)

Note that r;; generally depends on both the (joint and marginal) statistics
of the underlying spike trains and the features of the filter kernels, even
if the kernels f;(t) and f;(t) are identical: ¢;;(t) = ¢:i(t) = ¢;;(t). Only if, in
addition, all spike train covariance functions Vi sjjij(t) are delta shaped
(e.g., precisely correlated, stationary Poisson processes), the filter contribu-
tions cancel out.

2.2 Spectra and Coherence. Correlations in or between time series are
often considered not only in the time but also in the Fourier (frequency)
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domain. If we denote E;(w) and F;(w) as the Fourier transforms? of the spike
train &;(t) and the filter kernel f;(t), respectively, the Fourier transform of
the shotnoise x;(t), defined in equation 2.1, reads X;(w) = &;(w)F;(w). Given
the one- and two-dimensional spike train spectra,*

Uij(w, o) 1= §[¥i(t, )@, @) and  jj(w) := F[¥ij(D)](@), (2.8)
we obtain
Cij(w, ) = ¥ij(w, ) Fi(@)Fj(@) and Cij(w) = ¥;j(0)®ij(@) (2.9)

as the one- and two-dimensional power- (i = j) and cross-spectra (i # j)
of the shot-noise signals by Fourier-transforming equations, 2.3 and 2.4,
respectively. ®;;(w) := Fi(w)F ]?‘(w) in equation 2.9 denotes the the power-
(i = j) or cross-spectrum (i # j) of the filter kernels f;(t) and f;(t) (the
superscript * represents the complex conjugate).

A normalized correlation measure in the frequency domain is the com-
plex coherence (Priestley, 1983; Jarvis & Mitra, 2001),

Cij(w) _ Ui (0)Pij(w)
JCi@)Cji(@) ) Bii(0) T (@)is(0) @ (@)

K@) 1= (2.10)

which is defined as the ratio between the cross-spectrum C;j(w) and the
geometric mean of the power spectra C;; Jjj(@). Its modulus (amplitude)
k(w) := |K'(w)], restricted to the range [0, 1], is called coherence. The phase
of the complex coherence, equation 2.10, contains information about the
temporal alignment of the two signals x;(¢) and x;(t) and can therefore
be used to study delays or negative correlations (anticorrelations). Note
that the definition of the coherence is meaningful only at frequencies with
nonvanishing power.

With &;j(w) = Fi(w)F ]’f(w), it is straightforward to see that the coherence
k() is, in contrast to the correlation coefficient 7;; in equation 2.7, indepen-
dent of the linear filter kernels f;/;(t) and exclusively reflects the statistical
properties of the spike trains (Brown, Kaas, & Mitra, 2004):

[ ()]
Uii(0) V()

k(w) = (for any f;(t)and f;(t)). (2.11)

3Throughout the article, Fourier transforms are represented by capital letters.
4%[1(w, ') and F[](w) denote the two- and one-dimensional Fourier integrals,
respectively.



Neuronal Correlations 2141

However, this does not hold if the shot-noise signals arise from superposi-
tions x; (t) =Y i 1k * fir)(t) of n spike trains convolved with different ker-
nels fi(t). In th1s case, the spectra read Cij(w) = Y, > Wk (w) Fix(w)F i(@).
In general the resulting coherence is filter independent only 1f the kernels
fir(t) (k € [1, n]) are identical.

Note that «'(w) evaluated at frequency w = 0 is the area of the covariance
function normalized by the areas of the autocovariance functions:

ff; d‘L’ 5,‘]'(7,')
o dr (o) [ dre (@)

K'(0) = 2.12)

In the neuroscientific context «’(0) is frequently called correlation coefficient
too (Bair et al., 2001; Kohn & Smith, 2005; Moreno-Bote & Parga, 2006).
The motivation to prefer «’(0) over r;; in these works is the observation that
peaks in neuronal correlation functions typically have some temporal extent
and that the width of the peaks varies depending on the system and the
experimental protocol. Therefore, an integrated measure appears adequate.
Our considerations above demonstrate an additional advantage of «'(0): it
is independent of a joint shot-noise kernel. In this article, we reserve the
term correlation coefficient for r;; as defined in equation 2.7.

2.3 Example: Spike Count. Before we investigate models of neuronal
correlation in the next sections, let us first turn to a shot-noise process
not originating from the biophysical properties of the system but from the
measurement process itself: the spike count:

t+h
xlh(t) = ds &(s), (2.13)

t

that is, the number of spikes observed in a time window [t,t + k). The
measure can be viewed as resulting from the convolution of the spike train
& (t) with the rectangular kernel,

. 1 —-h<t<O0 214
fitt) = 0 el . (2.14)

else

In many applications the spike count is computed on a discrete time grid
t € {k - hlk € N}, whereas here, we consider the general case of continuous
time where spikes are counted in a sliding window (moving average). The
results of this section are formally the same for both the continuous and the
discrete case. In the latter, time integrals (convolutions) have to be replaced
by sums over time steps.
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For simplicity, we restrict ourselves to the case of identical filter kernels
f):= fi(t) = f;(t) and therefore ¢(7) : = ¢4i(r) = ¢;;(r) = ¢;;(r). Utilizing
equation 2.6, we obtain the spike count covariance,

h ~
= / e (= 1e1) - B (1) 2.15)

for a given spike train covariance function &ij(r) and a bin width k. The
integration limits [}, hi] and the prefactor (i — |t[) result from the autocor-
relation® of f(t):

6() = / dt FOft+1) = 2.16)

h—lt] —-h<t<h
0 else '

For i = j, equation 2.15 resembles the result for the spike count vari-
ance presented in Papoulis and Pillai (2002). The spike count correlation
coefficient,

. St de (= [2)) Y (o)
] \/51;'11'5?]' \/ffh dr (h — 7)) Yii(x) ffh de’ (h —17/l) ¥ (7)
(2.17)

is, up to the triangular prefactors (h — |7|), the normalized area of the spike
train cross-covariance function in the interval [—F, k]. Bair et al. (2001)
studied the timescale dependence of spike count correlations using this
measure but omitted the triangular prefactors.

Consider the simple example of a single stationary Poisson process with
constant rate v; and autocovariance function (Papoulis & Pillai, 2002)

Vii(v) = vi8(). (2.18)

ST fi(t) # fi(t) and assuming h; < hj, ¢(z) has to be replaced by the filter cross-
correlation:

0 ‘L'th]'
h]'+r —hj<‘f§—(/’l]'—hi)
¢ij(r) = {hi —(hj—hi)<t<0

hi—1t O0<t1<h
0 T>h
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Applying equation 2.15 immediately recovers the well-known result for the
spike count variance of a Poisson process,

11

h
gh =y, dt (h — |z]) - 8(z) = vih, (2.19)
—h

with a linear dependence on the bin size h. A similar result is obtained for
the count covariance of two processes with delta-shaped cross-covariance
function. Natural spike trains, however, typically exhibit structured covari-
ance functions. It is a major objective of this article to point out that the
natural nondelta-type correlation structure leads to a complex dependence
of correlation coefficients on the properties of the filter kernels.

3 The Common Input Scenario

Equipped with the formalism to study the correlation between two shot-
noise signals developed in the previous section, we investigate in this sec-
tion how non-Poissonian spike statistics and nonstationary firing rates af-
fect pairwise correlations between filtered spike trains in common input
models. To this end, we define a minimal structural model describing two
neurons sharing part of their inputs (see section 3.1) and derive the result-
ing spike train correlation functions (see section 3.2). Section 3.3 exploits
the results of section 2.1 to calculate the variance, the covariance, and the
correlation coefficient of spike count signals for two examples introduced
in sections 3.2.1 and 3.2.2. In section 3.2.1, a gamma process is considered
to highlight how measured correlations depend on the autocorrelation of
the common source. An inhomogeneous Poisson processes with sinusoidal
rate modulation in time and random phase across trials (see section 3.2.2)
is employed to clarify the notion of nonstationarity in the context of the
correlation coefficient. Section 3.4 demonstrates that for a large class of pro-
cesses, the high-frequency coherence reflects the common input strength
and therefore provides an unambiguous measure that depends on neither
the filter nor the marginal statistics of the presynaptic sources. Section 3.5 is
concerned with the natural situation where spike cross-correlations exhibit
a temporal dispersion as originating from heterogeneous delays, a finite
rise time of the postsynaptic potentials, or other mechanisms.

3.1 Model Definition. Two spike trains &;(t) and &;(t), constituting the
total presynaptic activity of two neurons i and j, are constructed by super-
imposing two disjoint processes &;,(t) and &;.(t) with a process &(t) shared
by both neurons:

§i(t) = &, (1) + &c(8),  §;(t) = &4, () + &c(t) B.1)
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(see Figure 1A for an illustration of the architecture). To reduce the number
of parameters, we assume that the rates of £;(t) and £;(t) are identical,
v(t) :=v;(t) = v;(t). The strength of the common source is parameterized
by the relative contribution « : = v.(t)/v(t) of its firing rate to the total rate.
The rates of the background processes &;, () and &, (t) can thus be expressed
as v(t) := vy, () = va; () = (1 — o)v(¥).

3.2 Correlation Functions. The (one-dimensional) auto- and cross-
covariance functions of the two (centered) spike trains &;(t) and & j(t) are

Vi (t) =E[& (0 (t + )] = Ya,a,(1) + Vac(2) + Ve, (1) + Yec(z)  (3.2)
Uij (1) =E[&(HE;(t + O)] = Vg, (T) + Ve (0)+Vea, (1) + Yee(r).  (3.3)

Obviously both are generally determined by the marginal as well as the
joint second-order statistics of the presynaptic sources. Let us, again for the
sake of simplicity, assume that the disjoint and the common processes are
mutually uncorrelated:

Viid; (1) = Ya,e(t) = Ya,e(v) = 0. (3.4)
In this case, equations 3.2 and 3.3 reduce to

Vii (1) = Ya,a,(t) + Vee(7) (3.5)
Vij (1) = Yee (7). (3.6)

The disjoint inputs are modeled as stationary Poissonian sources with con-
stant firing rate v;, hence

Via,a,(t) = vad (7). (3.7)

In order to dissect the effect of different aspects of the common source
process &(t) on common input correlations, we investigate two specific
cases. The stationary gamma process (see section 3.2.1) is discussed as a
simple example of a non-Poissonian point process in order to demonstrate
how common input correlations are altered by the interval distribution
of the common source process. The effect of nonstationarity in time and
across trials on common input correlations is discussed by considering the
common source process as an inhomogeneous Poisson process with random
rate (see section 3.2.2).
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3.2.1 Gamma Source. Let the common source emit spikes at intervals
drawn from a gamma distribution,

PMI)ZI%V(EszﬁleXPC—WVTL (38)

with positive integer orders y € N*. The autocorrelation function of a gen-
eral point process is determined by the sum over all kth-order interval
distributions px(t) (Perkel, Gerstein, & Moore, 1967a):

Vee(T) = Ve (6(7) + Z pk(|f|)> . (3.9)

k=1

For any renewal process, consecutive intervals are independent (Cox, 1962).
Therefore, pi(t) is the k-fold convolution of the first-order density,

pr(t) = (p1 % -+ * p1)(7). (3.10)
k

Asequation 3.10 factorizes in the Fourier domain, Py(w) = P4 (w)k, the power
spectrum of a renewal process reads

Ve () = F [Vee ()] (@)

=V (1 =+ Z {Pl(a))k + Pl*(a))k}>

k=1
(3.11)

= (1 24> {Pi(e) + Pl*(a))k}>
k=0

= ([1 - Py(@)] " +[1 = Pf(w)] " —1).

The Fourier-transformed first-order interval density of the gamma process
is given by (Cox, 1962)

Pie) = 5[l (@) = (L) 3.12
@) =5 = (L) 612

The autocorrelation function v..(r) can now be obtained by (numerically)
computing the inverse Fourier transform of the spectrum, equation 3.11.
A closed analytical expression for the autocovariance function can also be
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derived by a direct evaluation of equation 3.9:°

y—1
Vee(T) = v:8(T) + 02 Z > 17 exp(yv.t[e® Y —1]). (3.13)
1=1

Gamma processes are frequently considered as models of neuronal firing
since they can mimic the refractory behavior of neurons following spike
emission. For y > 1, short interspike intervals become more and more
unlikely. This is reflected in the autocovariance functions, which exhibit
a trough around the central peak at T = 0 (see Figure 2A, left). A limitation
of the choice of gamma processes is their tendency to become more and
more regular with the coefficient of variation scaling as 1/,/y (Cox, 1962).
Observed coefficients of variation in cortical spike trains, however, remain
close to one (Softky & Koch, 1993).

3.2.2 Inhomogeneous Poisson Source. In a second example we model the
common source as a doubly stochastic process (Cox process; see Daley &
Vere-Jones, 2005) where not only the spike train realizations [ but also the
rate profiles are random. In the kth trial, &/ (t|k) is considered as a realization
of a Poisson process with a time-dependent rate function vE(t) := B[l (t]K)]
and autocorrelation (Papoulis & Pillai, 2002):

Vet ) =B [ (L& TR)] = vi®3(t — ) + e (). (314)
Across trials, the firing rate profiles v¥(t) change randomly. In the following,
all expectation values E [-] therefore have to be interpreted as expectations

over realizations ] and over trials k, thatis, E [-] = Ex [E; [-]]. After averaging
over k, the covariance function reads

Vee(t, t') = B [VE)] 8t — ') + 7ee(t, 1), (3.15)
with

Vee(t, ) = Ex [vE (i (E)] — B [vE(®)] Ee [vE(#)] (3.16)
being the autocovariance function of the firing rate. If the rate functions
were identical in each trial, averaging over k would not have any effect; the

two terms in equation 3.16 would cancel out, and in equation 3.15, only the
delta peak would remain. In all other cases, however, the rate covariance

SFor a derivation, see Pipa, van Vreeswijk, and Griin (2008).
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function 7.(t,t’) determines the structure of the spike train covariance
function.

In order to study the interplay between nonstationarity in time and
nonstationarity across trials, it is sufficient to restrict the discussion to pro-
cesses where the average firing rate is constant in time,

Ec [vE®)] =: ve. (3.17)

At first sight, this seems to imply simultaneous stationarity of the spike-
generating process in time and across trials. Thus, for any given trial k, we
would expect the firing rate describing the process to be constant in time
vE(t) = vk, and for any given point in time ¢, we would expect the firing
rate to be constant across trials v¥(t) = v(t). In fact, however, stationarity in
time follows only if, in addition to equation 3.17, the system is stationary
across trials. Consider, as an example, a process with sinusoidal rate func-
tion and stationary frequency fo = wo/2m, but phase ¢; € [0, 27) uniformly
distributed across trials:

VE(t) = ve[1 + cos(wot + )] (3.18)

Averaging over the ensemble of trials (k) results in a constant value v, =
Ex[v¥(t)] despite the nonstationary firing rate driving spike generation in
eachindividual trial. Thus, by construction of the process, the trial-averaged
firing rate does not expose any underlying nonstationarity. In contrast, the
trial-averaged autocovariance function does. The rate covariance function
is given by

Feet 1) = 502 cos(ant ') (3.19)

and depends on only the time difference v =t — t’. Hence, we obtain for
the spike train covariance function of the common source,

Vee(T) = ve8(7) + %vf cos(woT). (3.20)

The fact that the two-dimensional correlation function V. (t, t) is time in-
variant allows us to compute the one-dimensional shot-noise correlations
using equation 2.4 in the subsequent sections.

3.3 Bin Size and Autocorrelation Dependence of Spike Count
Correlations. With a generic correlation model athand, we can now discuss
how measured correlations depend on the choice of the filter kernel and the
marginal statistics of the presynaptic sources parameterized by the y-order
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in the first example (in section 3.2.1) and by the oscillation frequency wy in
the Poisson example (in section 3.2.2).

With equation 2.15 and the spike train autocovariance function V() of
the common sources given by equations 3.13 and 3.20, we obtain for the
spike count covariance of the gamma example,

& = vch +2 Z (h — B7'[1 — e BiM]), (3.21)

where A =12e?/7 and B = yv.(1 —e*/7), and for the oscillating
Poisson example,

2
v
h = veh — w—%(cos(woh) - 1). (3.22)

The variances are given by &/, = vyh + ¢l -
The bin size dependence of the spike count variance &, covariance cf],

and correlation coefficient r!. = ¢ /¢! determined by equations 3.21 and
3.22 is shown in Figures 2B to 2D for different y-orders (left column) and
oscillation frequencies (right column), respectively. Figure 2A illustrates
the corresponding spike train cross-covariance functions 3.13 (left) and 3.20
(right). Note that these cross-covariance functions ¥;;(t) reflect the autoco-
variance functions V.(r) of the common sources (see equation 3.6). Only
at short timescales the count variances and covariances do not deviate
from the Poisson case. In the gamma example (see Figure 2, left), “short”
means short compared to the mean interspike interval 1/v. of the common
source (here, 200 ms). In the Poisson example (see Figure 2, right), the bin
size must be considerably smaller than the oscillation period 27 /wy. The
count variances ¢/; and covariances ¢/; exhibit a nontrivial dependence on
the bin size h. Note that the normahzatlon of the covariance by the vari-
ances in the correlation coefficient r/: does not remove this dependence. In
the gamma example, the deviations from the Poisson case become more
pronounced with increasing y-order and bin size. In the Poisson exam-
ple, the count variances and covariances oscillate as a function of the bin
size.

By comparing the results for the two examples shown in Figure 2 with
the case where the common process is a stationary Poisson process, we
arrive at the following conclusion. For a given bin size h, spike count vari-
ance, covariance, and correlation coefficient are generally decreased if the
common process is a gamma process; they are increased if the common
process is a Poisson process with sinusoidal rate profile. To gain an intu-
itive understanding, consider the number of spikes x(t) in a certain time
window [t, t 4 h) for a given realization of the point process. In a gamma
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Figure 2: Bin size dependence of spike count correlations (analytical re-
sults: curves, simulation: symbols) in the simple common input scenario (see
section 3). Left column: common gamma source of orders y =1 (solid, cir-
cles), y =2 (dashed, squares), and y = 15 (dotted, diamonds) with common
input strength « = 0.5 and total firing rate v = 10s™! (40 trials, simulation time
T =1000s). Right column: common Poissonian source with sinusoidal rate
function of frequency fy, = 10 Hz (dotted, circles), fo = 20 Hz (dashed, squares),
and f; = 100Hz (solid, diamonds; common input strength o = 0.5, total fir-
ing rate v = 1000571, 10 trials, simulation time T = 2s). (A) Spike train cross-
covariance functions v;;(r) (zero lag peaks truncated). (B) Normalized spike
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as function of the bin size I (log-scaled abscissa).



2150 T. Tetzlaff et al.

process, the probability of spike generation immediately after a spike is
reduced (reflected in the correlation functions shown in Figure 2A, left).
Hence, the number of possible spikes in a time window that is small com-
pared to the mean interspike interval is decreased (compared to a stationary
Poisson process with the same rate). Conversely, for an oscillatory Poisson
process, the spiking probability after spike emission is enhanced for time
intervals that are small compared to the oscillation period (see Figure 2A,
right). Therefore, the spike count increases. Remember that this does not
affect the mean spike count obtained by averaging over realizations of the
point process. It does affect, however, the expectation of the square of the
spike count and therefore the spike count variance. Studying the variances,
we realize that in the common input scenario, each process results from
a superposition of a common gamma or inhomogeneous Poisson process,
respectively, and a stationary Poissonian background process. In contrast,
the spike count covariances reflect the variances of the common process
only. Thus, the normalization of the covariance by the variances does not
remove the bin size dependence.

A dependence of the count variance ¢/: and the Fano factor F = &% /v;h
(Fano, 1947) on the bin size for (non-Poissonian) renewal processes has
already been reported by Rotter, Riehle, Rodriguez Molina, Aertsen, and
Nawrot (2005). In particular, the authors point out that the Fano factor of a
gamma process is biased toward 1 for small bin sizes. Our considerations
demonstrate that this is the case for all point processes with a finite (or zero)
interval density p;() (interspike interval distribution) at small time lags .
The autocovariance function (Cox, 1962; Perkel et al., 1967a)

i (7) = vi (5(7) +y Pk(lﬂ)) -7

k=1

of such a process is in the vicinity of v = 0, always dominated by the delta
peak with amplitude v;. According to equation 2.15, the count variance ¢!
therefore approaches the count mean v;# for small bin sizes &, resulting in
a Fano factor close to one. In other words, at timescales that are small com-
pared to the mean interspike interval, a point process is not distinguishable
from a Poisson process.

Figure 2 not only illustrates that measured spike count correlations
depend on the choice of the bin size h but also demonstrates that the
variance, the covariance, and the correlation coefficient are determined by
the statistics of the common source. In the gamma example (left column
in Figure 2), the correlation coefficient decreases as the y-order increases
(see Figure 2D, left). This dependence on the y-order is made explicit in
Figure 3A. For common sources with oscillating Poisson statistics (right
column in Figure 2), the correlation coefficient decreases with increasing
oscillation frequency f, (see Figure 2D, right).
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Figure 3: Dependence of common input correlations on the statistics of the
presynaptic sources for the simple common input model (left column; see
section 3) and the Poisson network model (right column; see model in section 4).
Left column (common input model): (A) Measured spike count correlation co-
efficients rl’; and (B) averaged high-frequency (>10 Hz) coherences « for three
different bin sizes i = 1ms (circles), h = 128 ms (squares), and & = 1024 ms (di-
amonds) as functions of the order y of the common gamma source (common
input strength « = 0.5, total firing rate v = 10s7!). Symbols represent simula-
tion results obtained from averaging over 1000 trials (simulation time per trial
T =4.0965). Error bars indicate standard deviations resulting from 100 repe-
titions of the experiment each with 10 trials (error bars in A for # = 1ms and
in B are too small to be visible). Right column (Poisson network model): (C)
Measured spike count correlation coefficients r;; and (D) averaged coherences
« for synaptic input spike counts (circles), synaptic input currents (squares),
membrane potentials (diamonds), and output spike counts (stars) as functions
of the oscillation frequency f, of the presynaptic sources (30 trials, simulation
time T = 1s; see section 4.1 for model parameters). Thick gray curves in Aand
C show analytical results for the correlation coefficient; in B and D, they depict
the (effective) common input strengths.

3.4 Coherence. The dependence of the correlation coefficient on the fil-
ter properties and on the structure of the spike correlation functions (see
Figures 2D and 3A) renders its interpretation difficult and limits its useful-
ness for the comparison of data from different preparations and laboratories.
In section 2.1 we remarked that in contrast to the correlation coefficient, the
coherence « (w), equation 2.10, is independent of a joint linear filter kernel.
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Figure 4: Extraction of correlation from spike trains with structured autocor-
relation generated by the simple common input model (see Figure 1A). (A)
Spike train power- ¥;;(w) and (B) cross-spectra \¥; j(w) estimated from measured
spike count spectra C;; sij(w) (total rate v = 10 s~!, common gamma source with
y = 20, common input strength « = 0.5, simulation time T = 65.536 s, averaged
over 30 trials). The panels show data for four bin sizes superimposed (light gray
to black and with decreasing thickness: 1 = 0.1, 1, 128, and 1024 ms), no further
smoothing of graphs. The white curves show analytical results. (C) Coherence
k(@) = |¥j(@)|/Vii(@) = |Cij()|/Cii(w).

This is illustrated for the gamma example in Figure 4C. However, the coher-
ence still depends on the shape of the auto- and cross-spectra of the input
spike trains. As we assumed mutual independence between the common
and the disjoint input processes, equation 3.4, the coherence is given by

k(@) = —— (3.23)

where Wy (w) := Vg4, () = W4, (w). For a large class of point processes the
power spectrum becomes constant at high frequencies with its amplitude
approaching the numerical value of the firing rate (Jarvis & Mitra, 2001;
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Halliday, 2000):

lim .. (0) = v,
w—> 00

. (3.24)
Iim Yy(w) = v;.

w—> 00

This is trivial for the disjoint Poissonian processes with Yyi(0) = vg (Vo).
But the gamma process also exhibits this property: both the real and the
imaginary part of equation 3.12 approach zero in the limit  — co. With
equation 3.11, the first limit in equation 3.24 follows immediately. If the
common source is an oscillating Poisson process, its power spectrum, the
Fourier transform of equation 3.20, is identical for all frequencies w except
w-

\Ilcc(w) =V (Va) # wO)- (325)

In general, equation 3.24 holds for all point processes with interval den-
sities pi(t) absent of high-frequency components. This becomes apparent
by inspection of equation 3.9: if § [px(7)] (w) = Pr(w) vanishes in the limit
w — oo for all orders k, the Fourier transform of the autocorrelation 3.9—
the power spectrum—saturates at a constant level determined by the firing
rate. Typically natural point processes fulfill this condition. To mention an
exception, consider a regular process with a constant interspike interval T:
pi(r) = 8(z — T).

Given the property 3.24 and the assumptions of section 3.2 the coherence
at high frequencies recaptures the common input strength a:

Ve

lim «(w) = =a. (3.26)

w—> 00 Vg + ve

Figure 4 compares the power spectra jj(w) = Ve (0) + Vga(w) (see
Figure 4A), the cross-spectra ¥; j(w) = U, (w) (see Figure 4B), and the coher-
ences k(w) (see Figure 4C) for the gamma example obtained from simula-
tions with analytical expressions. The spike train spectrum W;;,;;(w) based
on simulated spike trains is estimated by dividing the spike count spectrum
Ciijij(w) by the spectrum ®(w) of the spike count filter (excluding frequen-
cies with ®(w) = 0). Figure 4 compares results for four different bin sizes.
The coherences in Figure 4C are computed directly from the spike count
spectra. Both the spectra and the coherence become constant at frequencies
above 10 Hz. The total rate v = 10s~!, the rate v, = 557! of the common
process, and the common input strength « = 0.5 can be clearly identified as
the limiting values of the three panels.

Figure 3B summarizes the results for measured high-frequency coher-
ences for different bin sizes & and y-orders. Here, the coherences are
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averaged over frequencies above 10 Hz. In contrast to the correlation co-
efficient (see Figure 3A), the high-frequency coherence depends on neither
the bin size nor the order of the common gamma process.

3.5 Jittered Correlations. In general (see section 2.1), the correlation
coefficient observed for two shot-noise signals results from the interaction
between the correlation functions of the underlying spike trains and the
filters determining the shot noise. In the foregoing, we have considered the
case where the structure of the correlation functions is determined exclu-
sively by the autocorrelations of the presynaptic sources. However, even
in the simplest case where the latter are stationary Poisson processes with
delta-shaped autocorrelations, the resulting cross-correlations can be struc-
tured. If, for example, a presynaptic neuron consistently contributes spikes
to the two input trains with different but static delays, the cross-correlation
exhibits an off-center delta peak. Assuming that joint contributions come
from many different sources and that there is no bias in the distribution of
delays, a temporally extended and centered peak results. The same would
be true for sources that deliver spikes to the two input trains with dynam-
ical delays described by an identical mean delay and nonvanishing uncor-
related temporal jitter. Consider two processes &;(t) and &;(t) constructed
as explained in Figure 1A. Assume that both the common £.(t) and the two
disjoint sources &, (f) are homogeneous Poisson processes. If spikes of the
common process & (t) are precisely copied into both processes &;(t) and £;(t),
the resulting cross-correlation function is delta shaped. However, if one of
the two processes receives a jittered version of the common process,

() =) 8t — t + e). (3.27)
k

such that each spike at time # is shifted by a random number ¢, the shape of
the cross-covariance function reflects the probability density function (pdf)
piit(€) of e

Vij (1) = ve pjie(7). (3.28)
Here, v. denotes the firing rate of the common source £.(f), which is not

affected by the jittering procedure. Since we assumed that all involved pro-
cesses are Poissonian, the autocovariance functions remain unaffected too:

Viisjj(t) = v8(z). (3.29)

According to equation 2.17, the count correlation coefficient reads

= Uh[ dr (h — [t pjie(7)- (3.30)
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Figure 5: Trivial bin size dependence of the spike count correlation coefficient
for temporally extended cross-correlations. Two correlated Poisson spike trains
(v=10s"!, @« =0.5) of duration T = 1024s are constructed as described in
Figure 1A. In addition, in one of the spike trains, the spikes from the common
source arejittered by a random offset drawn from a symmetric distribution (light
gray curves: standard deviation o = 2ms; dark gray curves: ¢ = 16 ms) with
zero mean: (A) rectangular and (B) gaussian distribution (see insets). In both
panels, the spike count correlation coefficient ¢;;/(vh) is shown (gray curves:
analytical results; dots: simulations) as a function of the bin size / (log-scaled
abscissa).

Its bin size dependence is illustrated in Figure 5 for a rectangular and a
gaussian delay distribution pji(t) (see appendix B).
With Py (w) being the Fourier transform of pji(7), the coherence reads

k(@) = %Pﬁt(wn. (3.31)

As pjie(t) is a probability density with P(0) = [ dt pjie(r) = 1, the coherence
at frequency w = 0 recaptures the common input strength o:

K(0) = "; —a. (3.32)

In contrast to the correlation coefficient, «(0) does not depend on the filter
properties. It recaptures the strength of the common input «, however, only
if the presynaptic sources are stationary Poisson processes.

In a realistic setting, we must expect that both the spike statistics of the
presynaptic sources and the presence of (distributions of) delays will shape
the resulting correlation functions. In this case, the coherence in our model
reads

| Pit() Wee ()]

) = J@) + ()’

(3.33)
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Figure 6: Sketch of the Poisson network model. Neurons i and j receive
nonstationary Poissonian inputs from a local network (large box) and inde-
pendent external sources (b;;;). Presynaptic neurons in the local network fire
independently with in-phase oscillating firing rates (frequency fo). Local presy-
naptic neuron populations (hatched boxes) partially overlap (gray region),
thereby decomposing into common (c) and disjoint sources (d;;;). The result-
ing correlations between neurons i and j can be measured between compound
input spike trains (ri,), total synaptic input currents (r.), membrane potentials
(rv), and output spike trains (rout).

In section 3.4 we argued that in the neuroscientific context, many processes
exhibit power spectra that approach a constant value, the firing rate, in the
® — oo limit. In the absence of temporal jitter, this enables us to determine
the common input strength « from the coherence « (w) atlarge frequencies. In
the presence of temporal jitter, this approach is problematic if P;(w) decays
to zero at large frequencies, which seems natural for non-delta-type jitter
distributions. According to equation 3.33, in this case, the high-frequency
coherence will become zero too. This is not surprising because if the spread
of pji(7) is large, the spike trains become de facto uncorrelated on a short
timescale. Hope to recover « rests on the assumption that the temporal
spread of pjit(t) is much smaller than the timescale of the structure of the
autocovariance function V.. (t), such that ¥ () falls off faster than Pi(w).

4 Poisson Model of a Local Cortical Network

4.1 Model Definition. We now turn to the consequences of the filtering
of presynaptic spike trains on correlated postsynaptic activity in the light of
a simple model that mimics the input statistics in a local cortical network in
a volume of about 1 mm? (see Figure 6). Rather than describing the activity
evolving in a recurrent network (see section 5), we replace at this stage all
presynaptic spike trains by (inhomogeneous) Poisson processes but take
into account the anatomical and electrophysiological network parameters.
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Consider a network of N neurons, a fraction Nz = BN being excitatory
and the rest Nt = (1 — 8)N inhibitory. Each neuron receives a fixed number
of K = aN synapses from the local network. Kg = K of them are excitatory
and K; = (1 — B)K inhibitory. In addition to these local inputs, every neuron
is driven by an excitatory external Poissonian source. The total input of
neuroni (i € [1, N]) thus reads

N
i (0) =Y (& fie) ) + Gio x foied)(): (4.1)

k=1

Here, &(t) denotes the spike train of a presynaptic neuron k and &; (t) the
external Poissonian process arriving at neuron i. The (linear) filter kernels
fq.ik(t) and f; ; ex(t) describe the responses of the postsynaptic neuron i
on the different presynaptic spike trains & (t) and &; ex(t) at different signal
levels g € {in, c, v} (see below).

For simplicity, we assume that spikes arriving at excitatory or inhibitory
synapses cause responses (postsynaptic currents or postsynaptic potentials)
that differ only in sign and amplitude, not in shape. We may thus simplify
our notation and write

fa®) if synapse k — i is excitatory
fa.ik(t) = { —gf;(t) if synapse k — i is inhibitory (4.2)
0 if synapse k — i does not exist

and f; iext = fy(t) (Vi). The parameter ¢ denotes the relative strength of
inhibition.

For demonstration we discuss the synaptic input, equation 4.1, at three
different signal levels: the weighted input spike count xi,;(t), the total
synaptic input current x.;(¢), and the free membrane potential x, ;(t). For
the input spike count xin ;(t), we use the spike count kernel fin(t) as de-
fined in equation 2.14 with a bin size h. The synaptic input current x. ;(t) is
obtained by convolving the presynaptic spike trains with an a-function,

0 t<0

, 4.3
Jer,“lte7t®s t>0 *3)

fc(t) = {

with a postsynaptic current (PSC) amplitude | and a time constant ;. The
free membrane potential x, ;(t) is derived from the synaptic current by
low-pass filtering with an exponential kernel:

0 t<0

ol §30° (4.4)

:fv(t) = {
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Here, 1, denotes the membrane time constant and C,, the membrane ca-
pacitance. The full membrane potential kernel (the postsynaptic potential,
PSP) results from the convolution of f.(t) and f(t):

-2
fult) = Je (L1 L D)ot _etrn et
CmTs \Ts  Tm Tm Ts

(4.5)

Since all four signal types are treated as shot noise, their marginal and
joint statistics can be described analytically if the statistics of the input
spike trains are known (see section 2.1). In addition, we numerically study
the output X,y (t) of our model neurons, which is defined by a Heaviside
function of the free membrane potential:

. 1 xv,i(t)zg

Xouti (F) = O(xy.i(t) — 0) = (4.6)

0 else

Although this simple static nonlinearity results in a (piecewise) continuous
binary output, we refer to it as “spiking” activity.

To simplify the derivation of the input correlation functions and spectra
in section 4.2 we assume that the network is homogeneous in the sense that
all local firing rates and auto- and cross-covariance functions are identical:

v(t) = v(t) = E [& ()] (V).
V() = Yu(v) = E[&M&(E +1)]  (VK), (4.7)
Ve(7) := P (r) = E [&(tE(t + 7)) (Vk #1).

The external sources are treated as stationary Poisson processes with rate
E [& ext(t)] = BKvext and autocovariance function

1Zext(":) =E [Si,ext(t)gi,ext(t + T)] = ﬁKUeth(T) (Vl) (48)

Assume further that the correlations between the external sources of dif-
ferent target cells i and j and those between external processes &; ex(f) and
local spike trains &(t) can be neglected. Local spike trains are described
as Poisson processes with time-dependent rate function v(t). Similar to
section 3.2.2 we consider a situation where the firing rates of all local neu-
rons covary for a given trial (or network realization). Across trials, however,
the rate functions are nonstationary, such that the trial-averaged firing rate
v := E [v(#)] is constant. If we assume that there are no correlations among
the local spike trains beyond those arising from covarying firing rates, the



Neuronal Correlations 2159

local covariance functions read

¥a(7) = v8(7) + 7(7)

. 4.9)
Ye(7) = 7(2).
Here, 7 () denotes the rate covariance function (see section 3.2.2):
7(1) := E [w(t)v(t + 1)] — v2. (4.10)
As an example, we focus on sinusoidal rate functions
v(t) = v [1 + cos(wpt + P)], (4.11)

with a fixed oscillation frequency fy = wp/27. As in section 3.2.2, we draw
the phases for each trial randomly from a uniform distribution (¢ € [0, 27)).
The rate covariance function thus becomes

p(r) = %vz cos(aT). 4.12)

Oscillatory population activity has been reported both experimentally
(Eckhorn et al., 1988; Singer et al., 1988; Aertsen & Arndt, 1993; Gray, 1994;
Fries et al., 2001) and theoretically (van Vreeswijk, Abbott, & Ermentrout,
1994; Brunel & Hakim, 1999; Brunel, 2000; see the companion article in this
issue: B. Kriener, T. Tetzlaff, A. Aertsen, M. Diesmann, & S. Rotter, “Cor-
relations and Population Dynamics in Cortical Networks”) as a prominent
feature of local cortical networks. With the help of the Poisson network
model described here, we investigate how common-input correlations ry,,
Te, tv, and 7oy at the different signal levels (weighted input spike counts
[in], synaptic currents [c], free membrane potentials [v] and output spikes
[out]) are affected by the presence and the frequency f of these oscillations
(see Figure 6).

If not stated otherwise, we use the following set of parameters: « = 0.1
(network connectivity), K = 1250 (number of synapses per neuron), 8 = 0.8
(relative number of excitatory cells), g = 6 (relative strength of inhibition),
v =10s"" (local single neuron firing rate), vexs = 8.8 s1 (firing rate of ex-
ternal sources), h = 0.1 ms (bin size of input count signals), ] = 50 pA (PSC
amplitude), ts = 0.5ms (synaptic time constant), t, = 10ms (membrane
time constant), Cr, = 250 pF (membrane capacitance), and 8 = 20mV (spike
threshold). With the chosen values for |, 75, tm, and C,, we obtain a PSP
amplitude of 0.22mV (for excitatory synapses) and a PSP rise time to the
maximum of 2.2ms (see equation 4.5). The same parameters are used for
the network model in section 5.
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4.2 Correlation Functions. With equations 2.4 and 4.1 and the assump-
tion that the external sources are mutually uncorrelated, the covariance
functions of the two shot-noise processes x;(t) and x;(t) are given by

N N N
(D)= (Tl ) @)+ D> (Y + 9} )(7)
k=1

k=1 I#k

+ aij(&ext * ¢ext)(r)~ (413)

Here, ¢,Z(r) denotes the cross-correlation between the filter kernels fi(7)
and fi(7), ext(t) the autocorrelation of f; ex¢(t). The Kronecker symbol §;;
is one for i = j and zero otherwise. In the frequency domain, equation 4.13
reads

N
Cij (a)) = Z ‘Ijkk (a))q) a)) + Z Z \Ijkl ‘Dljli(a) + 51] \Ijext(w)q)ext(a))
k=1

k=1 Ik
(4.14)

With the homogeneity assumption 4.7, the spike train power- and cross-
spectra become independent of the presynaptic neuron indices:

N
Cij(0) = Ta(@) > ®)f(@) + e Z Z 01 () + 81} Vert () Pext ().
k=1

k=1 l#k
(4.15)

As excitatory and inhibitory synapses differ only in amplitude, but not in
their kinetics (see equation 4.2), the power spectrum of x;(t) reads

Cii(®) = ®() - {¥, (w)(Kg + §°K1) + Ve (0)(Ke[Kg — 1]
+ &2 Ki[Ky — 1] — 28 KgK)) + Wer(@)}. (4.16)
Here, ®(w) denotes the power spectrum of the (excitatory) filter kernel f (f).

Assuming that the numbers of excitatory and inhibitory synapses are large
(i.e., Kg > 1 and K; >» 1), we finally obtain

Cii(w) = P(w){(Kg + g*K1) W, (o) + (Kg — §K1)*We(0) + Pexe()}
= ®(0){K(B + g*[1 — B)Wa(w) + K*(B — g[1 — B V(o)
+ \pext(w)}- (4.17)
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For the cross-spectrum Cjj(w) (i # j), the first term Y i o/ () in
equation 4.15 represents the overlap between the presynaptic neuron popu-
lations of the two postsynaptic target cells i and j. Given a random network
of size N and a connection probability «, the average size of this overlap
is C = o?N. The fraction Cg = BC thereof represents the number of com-
mon excitatory presynaptic cells and C; = (1 — 8)C the number of shared
inhibitory sources. The cross-spectrum (i # j) thus reads

Cij(w) = P(0){(Ce + §2C) ¥ (w) + (K — gK1)* ¥ (o)}
= ®(0){aK (B + g*[1 — BV (0) + K*(B — g[1 — B Te(w)}.
(4.18)

Note that apart from the spectrum Went(w) of the external source, the cross-
spectra and power spectra differ only in the factor «, the network connec-
tivity.
With the Fourier transforms of equations 4.8, 4.9, and 4.12,
- 1,
W, (w) =v+ EV 71(8[(0 — wo] + Slw + wo])

¥ (w) = %Uzﬂ (5[&) — wo] + 8[w + wo]) (4.19)

qjext(a)) = BKVext,
the shot-noise spectra, equations 4.17 and 4.18, further simplify to

Cii(w) = a;; ®(w) + b P(w)(8[w — wo] + 8[w + wy])

_ (4.20)
Cij(w) = a;j®(w) + b P (w)(8[w — wo] + 8[w + wy]).

The prefactors a;;, a;;, and b are given by

aii = Kv(B + g°[1 — B) + KBvex
a;j = aKv(B + g*[1 - BI) (4.21)

b= %sz(a[ﬂ +g2(1 =B +18—g(1— PP

The inverse Fourier transform of equation 4.20 yields the shot-noise covari-
ance functions
Cii(7) = aii¢(t) + b P(wp) cos(wot)

(4.22)
Cij(r) = aij¢(t) + bd(wp) cos(wot).



2162 T. Tetzlaff et al.

>

normalized
auto-correlation
€ii(1)/8:1(0)

W

normalized

cross-correlation
&y (1) /2:4(0)

0

1+ weighted input spikes
0.8} === synaptic currents

membrane potentials
----- output spikes

normalized filter
auto-correlation
©(7)/9(0)

-50 -40 -30 -20 -10 0 10 20 30 40 50

Figure 7: Reconstruction of filter autocorrelations for the Poisson network
model shown in Figure 6. Normalized autocovariance functions &;(t)/¢;;(0)
(A) and cross-covariance functions &;;(z)/¢;;(0) (B) for input spike counts (solid
gray line), synaptic currents (dashed line), membrane potentials (solid black
line), and output spike counts (dotted line). Presynaptic neuron populations
oscillate with f, = 40 Hz (simulation time T = 1, 50 trials). (C) Normalized fil-
ter autocorrelations ¢(7)/¢(0) of synaptic input currents, membrane potentials,
and output spike counts obtained from the differences ¢;;(z) — &;;(r) between
the corresponding auto- and cross-covariance functions shown in A and B.
Thick gray curves depict autocorrelations of the kernels for synaptic currents
and membrane potentials used in the simulations. See section 4.1 for model
parameters.

4.3 Autocorrelation and Filter Dependence of Correlations. Figure 7
shows the normalized auto- and cross-covariance functions ¢;; (t)/¢;; (0) and
Cij(7)/cii(0) (see Figures 7A and 7B, respectively) obtained from simulations
with an oscillation frequency fy = 40 Hz. The covariance functions for the
weighted input spike counts, measured at a fine scale of 1 = 0.1ms, are
dominated by the delta peaks at r = 0. Due to the filtering at the synapses
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and by the membrane, these peaks are more and more flattened, thereby
emphasizing the oscillatory structure of the (normalized) covariance func-
tions. Note that the correlation coefficients, that is, the zero-lag values of
the normalized cross-covariance functions in Figure 7B, are increased by
the filtering procedure. The dotted curves in Figure 7 represent the mea-
sured covariance functions of the output “spike” signals. The threshold
mechanism modeling the spike dynamics obviously causes a decrease of
the correlation coefficient. At the same time, the peaks of the covariance
functions around 7 = 0 are slightly sharpened compared to the membrane
potential level. Still, the peaks have a considerable width of several mil-
liseconds, although the correlation functions of the unfiltered input signals
are sharp (gray curve in Figure 7B). Thus, the structure of the correlation
function of the output spike train is at least partially determined by the neu-
ronal filter properties. Changes in synaptic or membrane time constants, for
example, therefore provide a possible explanation for experimentally ob-
served changes in correlation strengths or timescales (Aertsen et al., 1989;
Vaadia et al., 1995; Kohn & Smith, 2005; Sakurai & Takahashi, 2006).

The variance (i = j) and covariance of the filtered signals are obtained
by evaluating equation 4.22 at T = 0:

5,']' = tlijd)(O) + b<I>(a)o). (423)

The dependence of the correlation coefficient r;; = ¢;; /¢;; on the oscillation
frequency fo = wo/2n is shown in Figure 3C for the four different signal
levels: xini/j(t), Xcisj(t), %v,isj(t), and Xouti/j(t). Only correlations between
the weakly filtered input signals xi, ;/;(t) are apparently unaffected by the
oscillation frequency fj in the interval [1,1000] Hz. Low-pass filtering by the
synapses and membranes results in a clear frequency dependence of the cor-
relation coefficient. Note that the frequency dependence of the output corre-
lations is governed by the membrane potential correlations. In other words,
a population of neurons is sensitive to changes in the input correlation and
reacts accordingly. Thus, spike synchrony in neural networks can be effec-
tively modulated by the frequency of network oscillations and the filter
properties of the neurons, that is, the time constants of the synapses and the
membranes. Both mechanisms are physiologically relevant: membrane time
constant, for example, can change as a result of changes in membrane con-
ductances (Destexhe & Paré¢, 1999; Destexhe, Rudolph, & Pare, 2003; Kuhn,
Aertsen, & Rotter, 2004). Network oscillations at various frequency bands
are reported both experimentally and theoretically and are known to occur
in relation to the experimental protocol (Eckhorn et al., 1988; Singer et al.,
1988; Aertsen & Arndt, 1993; Gray, 1994; Fries et al., 2001; van Vreeswijk
et al., 1994; Brunel & Hakim, 1999; Brunel, 2000; Kriener et al., this issue).
Under certain circumstances, the dependence of the correlation coef-
ficient on the filter characteristics and the autocorrelation structure of
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the presynaptic sources disappears. If we neglected the external sources,
Vext(t) = 0, and assume that the spike trains in the network are uncorre-
lated, ¥/.(z) = 0, the shot-noise covariance functions (Fourier transforms of
equations 4.17 and 4.18) become

Gij(v) = aK(B + g*[1 = B (¥ * $)(x)

(4.24)
= Olﬁi[(‘lf).
In this case, the correlation coefficient,
¢;i(0
50 _, (4.25)

M= e 06,0

is constant and equals the network connectivity «, regardless of the presy-
naptic autocovariance function ¥, (7) and the filter autocorrelation ¢(t).

4.4 Coherence. In section 3.4 we showed that for the simple common
input model, the common input strength o can be recaptured from the
high-frequency input coherence for a large class of spike processes. In the
network model discussed here, a expresses the network connectivity (see
section 4.1). We now demonstrate that the input coherence can provide an
estimation for « also in this extended model, which incorporates excitatory
and inhibitory local inputs, external sources, and correlated spiking caused
by covarying firing rates.

Through inspection of equations 4.17 and 4.18, it becomes clear that the
coherence k(w) = |C;’]’(C())|/Cii(a)) generally depends on both the marginal
(¥, (»)) and the joint statistics (¥ (w)) of the presynaptic spike trains. In the
high-frequency limit, the coherence reads

Iim «(w) = a(ﬁ +8°[1 - /3]) +rK(B—g[l- ﬁ])z

. . (4.26)

e (B+81 = BI) +rK(B - gll = BI) + p¢
Here, r denotes the spike train correlation coefficient (see appendix A).
Only if r =0 and vex = 0, the high-frequency coherence recaptures the
connectivity a.

In our specific example, where spike correlations result from oscillating
covarying firing rates, the connectivity « can still be estimated from the
coherences at frequencies w # +wy. Here, we obtain, with equations 4.20
and 4.21,

_ dij 1 Vext B ! 407
K(w)|w¢iwu_a7ii 05|: + 5 ﬂ—i—gz(l—ﬂ)} . (4.27)
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The correct network connectivity « is retrieved only if the rate vey of the
external input is zero. This is intuitively clear since both the external and the
local disjoint inputs contribute to the uncorrelated parts of the input signals
and are indistinguishable at this level. The actual common input strength—
the ratio between common and total inputs—is lowered by the external
sources. Nevertheless, «(w) evaluated at w # +wy provides a good mea-
sure of the network connectivity « if the local input fluctuations are larger
than those from the external sources. In our network model, this is indeed
the case, mostly due to the fact that (local) inhibitory inputs have a much
stronger impact than excitatory (local and external) ones. For our choice of
parameters (v & vext, B = 0.8, ¢ = 6), the correction term in equation 4.27 is
close to one (= 10/11). Figure 3D shows coherences measured in simula-
tions (symbols) and obtained from equation 4.27 (gray line). The simulation
results represent coherences averaged over all frequencies f € [0, 1000] Hz
except fo. The coherences for all input signals (Xin,i/; (t), Xc.ij(t), Xv.ij(t)) are
close to @ = 0.1. They depend on neither the filter characteristics nor the
network oscillation frequency fy. Also, the measured output coherences for
Xout,i/j(t) do not depend on fy. They are, however, much smaller than o
(of the order of 1072). Obviously correlations (coherences) between input
signals (synaptic currents, membrane potentials) provide much more infor-
mation about the underlying network structure than correlations between
spike signals.

4.5 Filter Reconstruction. In the Poisson network model, common-
input correlations affect only the amplitude a;; of the shot-noise cross-
covariance function in equation 4.22. The difference between the auto- and
cross-covariance functions of the filtered input signals,

Cii(t) = Cij(v) = (@i — aij)¢(7), (4.28)

thus reveals the filter autocorrelation ¢(7) up to the prefactora;; — a;; (which
is generally unknown). Consequently, basic features of the filter kernel f ()
can be reconstructed from the covariance functions ¢;;(r) and ¢;;(z) of two
simultaneously recorded shot-noise signals x;;(t); prior knowledge about
the unfiltered input signals (i.e., the underlying spike trains) is not required.
This is illustrated in Figure 7 for correlation functions measured at differ-
ent signal levels in simulations of the Poisson network model with rate
functions oscillating at fy = 40 Hz. As shown in Figure 7C, the normalized
autocorrelations ¢(z) of the PSC and PSP kernels are well recaptured by
the difference between measured auto- and cross-covariance functions. The
time constants of the synaptic currents (z; = 0.5 ms) and membrane poten-
tials (tm = 10ms) can be estimated from the decay times of these curves.
The procedure described here is strictly valid only if the input spike trains
exhibit (inhomogeneous) Poissonian statistics. Nevertheless, in section 5.2
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we show that synaptic and membrane time constants can be correctly de-
termined by the same method also in networks of integrate-and-fire (I1&F)
neurons with non-Poissonian firing statistics.

5 Balanced Recurrent I&F Network

5.1 Model Definition. In section 4 we modeled the spike trains in a
random network as (inhomogeneous) Poisson processes and studied the
responses of isolated cells without considering their feedback on the whole
system. In this section, we describe a randomly connected network of ex-
citatory and inhibitory integrate-and-fire neurons (as described in Brunel,
2000). The synaptic input current x.;(t) of neuron i is described similarly
to section 4 by equations 4.1 to 4.3 with the same parameters | = 50pA
and 7; = 0.5 ms. The relative strength of inhibition is set to g = 6 here. The
subthreshold membrane potential dynamics is governed by

TmV; = —Uz'(i') + Rx.i(t — D), (51)

with a membrane time constant 7, = 10ms, a membrane capacitance
Cy = tm/R = 250 pF (corresponding to a membrane resistance R = 40 MQ),
and a fixed spike transmission delay D = 2 ms. With the chosen values for
J, s, tm, and Cp,, each arriving excitatory spike causes a membrane depo-
larization of 0.22mV amplitude with a rise time to the maximum of 2.2 ms.
If the membrane potential v; (#) reaches the threshold 6 = 20mV, a spike is
emitted at time #. After spike emission, the membrane is reset and clamped
to zero for an absolute refractory period t.f = 2ms.

The network architecture is similar to that in section 4. The fraction of
excitatory neurons g = Ng/N is set to 0.8, the total number of synapses
per neuron to K = 1250. Thus, each neuron receives Kg = K = 1000
excitatory and K;= (1 — 8)K =250 inhibitory inputs randomly drawn
from the local network. We study the effect of the network connectivity
o = K/N = Kg/Ng = K1/ N; on correlation measures like the correlation co-
efficient or the coherence by varying the network size N (N = 12,500, 6250,
3125 corresponding to o = 0.1, 0.2, and 0.4). In addition to the local inputs,
each neuron is excited by Keyxe = 1000 external afferents, which are modeled
as independent stationary Poissonian processes of rate vex; & 8.8s71.

We simulated networks of three different connectivities (o« = 0.1, 0.2,
0.4) with a temporal resolution of 0.1 ms for 10s. To suppress onset effects,
the initial membrane potentials were normally distributed with a mean of
10mV and a standard deviation of 4mV. For data analysis, we recorded
synaptic input currents from 10 and spikes from 2000 randomly chosen
neurons. Free membrane potentials were obtained by low-pass filtering
of the synaptic currents according to equation 5.1. In accordance with the
study of Brunel (2000), we found individual neurons firing irregularly at
low rates of about 957!, independent of the connectivity .
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5.2 Filter Reconstruction. In section 4.5 we argued that the auto- and
cross-correlation functions of the linearly filtered signals contain valuable
information about the shape of the filter kernel. In a network of Poisson neu-
rons, the filter autocorrelation ¢(7) can be reconstructed from the difference
between the shot-noise auto- and cross-covariance functions. However, the
I&F neurons, clearly do not fire with Poissonian statistics. The population-
averaged autocorrelation (see the inset in Figure 8A) exhibits a trough
around the central peak indicating decreased firing probability immedi-
ately after or before spike emission (refractoriness). Also the power spectra
(see Figure 9C) are not completely flat. Still, as illustrated in Figure 8C, the
shapes of the PSC and PSP autocorrelations are nicely recaptured by the
difference between the auto- and cross-covariance functions of the synaptic
input currents and membrane potentials shown in Figures 8A and 8B.

In contrast to the results obtained for synaptic input currents and mem-
brane voltages, correlations between output spike trains (see the dotted
curve in Figure 8B, spike count signals, bin size 0.1 ms) are extremely weak.

5.3 Estimation of Network Connectivity from Measured Correlations.
In sections 3 and 4, we demonstrated that input coherences at high fre-
quencies provide a reliable measure of the common input strength. In the
Poisson network model (see section 4), we showed that the common-input
strength reflects the connectivity « = K/N in a random network. Here, we
investigate whether the high-frequency input coherences can be used as a
tool to estimate the network connectivity in a network of integrate-and-fire
neurons.

The top three panels of Figure 9 show for three different network con-
nectivities & = 0.1, 0.2, and 0.4 the population averaged power spectra
Ei[Cii(w)] of the total synaptic input currents (see Figure 9A) and free
membrane potentials (see Figure 9B), and the power spectra E;[¥;;(w)] ~
Ei[Cii(w)]/h? of the output spike trains (see Figure 9C), estimated from
their spike count signals (bin size 0.1 ms). The spectra at all three signal lev-
els show no essential differences for the different connectivities. Those for
synaptic currents and membrane potentials are dominated by the low-pass
characteristics of the individual synapses and membranes, respectively. The
power spectra of the output spike trains are characterized by the white spec-
trum of a Poisson process with an additional dead time (Gerstner & Kistler,
2002). As mentioned in section 3.4, the spike train power at high frequencies
equals the average firing rate (here 9.4571,9.257!, and 9.5s57! for & = 0.1,
0.2, and 0.4, respectively).

Figures 9D, 9E, and 9F show the corresponding population averaged
coherences |E;; [C; i()]1/E; [Cii(w)]. Clearly, higher connectivities result in
higher coherences at all frequencies. All coherences exhibit a broad peak in
the range 30 Hz to 100 Hz and less dominant peaks at higher frequencies.
These oscillatory components are related to the membrane time constants
of the individual neurons and the spike transmission delays (e.g., Brunel,



2168 T. Tetzlaff et al.

>

‘10_3 T

normalized
auto-correlation
E: [Gii(7)] /E: [€:4(0))]

w

=
o
c 7
o 'g 3,
O @
SEouw
® &
EST
y
2 4=
SIS
o
5
c I I I I I I I I I
5 1= = == synaptic currents 7
o] .
E5 = 0.8 membrane potentials 1
(3] .
T O S 0.6 ----- output spikes —
N & >~
N =
= 0w 04 I
g <
5£ % 02F .
c @©
0 PN e ca e L et o Vong p Antem e -

-50 -40 -30 -20 -10 0 10 20 30 40 50

Figure 8: Reconstruction of filter autocorrelations from I&F network simula-
tions for a network connectivity « = 0.1. Population-averaged normalized au-
tocovariance functions E; [€;;(7)] /E; [¢ii(0)] (A) and cross-covariance functions
E;; [E,- j(r)] /E; [€ii(0)] (B) for synaptic currents (dashed line), membrane poten-
tials (solid black line) and output spike counts (dotted line). (C) Population-
averaged normalized filter autocorrelations ¢(z)/¢(0) of synaptic input currents,
membrane potentials, and output spike counts obtained from the differences
E; [¢ii(v)] — Ejj [Ei j(t)] between the corresponding auto- and cross-covariance
functions shown in A and B. Thick gray curves depict autocorrelations of the
kernels for synaptic currents and membrane potentials used in the simulations.
Synaptic currents and membrane potentials were recorded from 10, spike trains
from 2000 randomly chosen neurons. See section 5.1 for network parameters.

2000; see Kriener et al., this issue). The coherences for synaptic currents and
free membrane potentials are qualitatively and quantitatively the same.
This is consistent with section 2.1, showing that coherences are insensitive
to linear filtering with a joint kernel. As shown in Figure 9F, the nonlinear
spiking dynamics destroys input correlations to a large extent in almost all
frequency bands (timescales).



Neuronal Correlations

>

10°
=102

10

T
synaptic currents

1

w

T
membrane potentials |

power spectrum  power spectrum power spectrum

spikes

T
synaptic currents

T
membrane potentials

C 10F
— 97
"
~
Z 8t
7
D 08,
. i
g i
< L
o
g i
o i
[e} L
o -
E 0.8f
. i
g i
c L
o
g i
o i
o L
© -
0
F _
107
(]
o
c
o
[}
=
[e}

T
spikes

10°

frequency f (Hz)

10

2169

Figure 9: Estimation of common input strength (connectivity) in simulated
balanced random networks (simulation time T = 10s, computation step size
0.1ms). Population-averaged power spectra (A—C) and coherences (D-F) at
different signal levels: synaptic input currents (A,D), free membrane potentials
(B,E), and output spike trains (C,F, bin size 0.1 ms). Different curves correspond
to different network connectivities « = 0.1 (black), 0.2 (dark gray), and 0.4
(light gray). Synaptic currents and membrane potentials were recorded from
10, spike trains from 2000 randomly chosen neurons. Spectra and coherences
are smoothed by moving average (frame size 30 Hz). See section 5.1 for network

parameters.
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At high frequencies, the coherences between synaptic input currents
and membrane potentials become constant and settle at values that are
almost identical to the corresponding network connectivities «. According
to section 4, high-frequency input coherences reflect the effective common
input strength, which is in our case close to the connection probability
a (see equation 4.27). We conclude that also in a network of integrate-
and-fire neurons, high-frequency coherences can be utilized to measure
the network connectivity. As shown in appendix A, this is mainly due to
the fact that spike correlations (coherences) are small (see Figure 9F and
Figure 10C).

If the presynaptic spike trains are described by stationary uncorrelated
Poisson processes, both the input coherences and correlation coefficients
recapture the common input strength. To test how far this Poisson assump-
tion holds for the spike trains obtained by network simulations, we compare
both measures quantitatively for three different connectivities, « = 0.1, 0.2,
and 0.4, in Figure 10. The plotted high-frequency coherences are obtained by
averaging the coherences in the frequency range 2 kHz to 5 kHz. Both cor-
relation coefficients and high-frequency coherences exhibit a monotonous
dependence on the network connectivity «. The input coherences, however,
estimate the effective common input strengths much more reliably than cor-
relation coefficients at the level of both synaptic currents (see Figure 10A)
and free membrane potentials (see Figure 10B). Correlations at the output
side are strongly suppressed (see Figure 10C). Nevertheless, they still ex-
hibit a monotonous dependence on the network connectivity (Figure 10C,
not shown for coherences). Note that small sample sizes generally over-
estimate small coherences. The spike coherences obtained at sample size
2000 are significantly smaller than the values obtained at sample size 10 (cf.
the means and error bars in Figure 10C). Therefore, the spike coherences in
Figure 10C should be interpreted as upper bounds.

The network simulations show that the transmission of correlations from
the input (synaptic currents, free membrane potentials) to the output side
(spikes) is very weak. This is in line with several other theoretical studies
on the correlation transmission by pairs of neurons (Shadlen & Newsome,
1998; Halliday, 2000; Stroeve & Gielen, 2001; Tetzlaff, Buschermohle, Geisel,
& Diesmann, 2003; Moreno-Bote & Parga, 2006). Moreover, as shown in
section 4.2, spike correlations do not affect the input correlations if the net-
work is perfectly balanced (for Kg = gKj; see equation 4.18). We recently
demonstrated that also for slightly unbalanced networks the effect of small
spike correlations is negligible for the input correlations (see Kriener et al.,
this issue). Thus, as long as spike correlations are small and the synap-
tic input is roughly balanced, input correlations are mainly determined
by the number of shared common sources, that is, the network structure.
Overall our results indicate that correlations between input signals provide
much more information about the underlying network structure than spike
correlations.
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Figure 10: Correlation coefficients (dark gray bars) and averaged high-
frequency (2-5kHz) coherences (light gray bars) and their relation to the net-
work connectivity « € {0.1, 0.2, 0.4} for synaptic input currents (A), free mem-
brane potentials (B), and output spikes (C, bin size 0.1 ms). Dashed horizontal
linesin Aand B indicate the effective common input strengths 0.098, 0.195, 0.390
for the three connectivities o (see equation 4.27). Data obtained from network
simulations (cf. Figure 9). Gray bars represent results from recordings of 10 (A,
B) and 2000 (C) neurons, respectively. Error bars show statistics (mean+SD)
for smaller sample sizes: 45 independent drawings of 2 (A,B) and 10 neurons
(C), respectively. Small spike coherences (C, error bars not distinguishable) are
systematically overestimated for small sample sizes.

6 Discussion

We summarize the main results of this study in section 6.1 and subse-
quently interpret our findings in the light of contemporary problems of
neuroscience:

® Section 6.2 refers back to the original motivation of this work by
discussing the interaction of temporally structured correlations with
the timescale of the measurement process.

¢ There is substantial experimental evidence that neuronal correlations
are modulated on short timescales. Section 6.3 argues that some of
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these findings may be explained by dynamic changes in single neuron
properties or the marginal spike train statistics.

¢ The high-frequency coherence of neuronal signals is largely unaf-
fected by the complex network dynamics and in many applications
independent of linear filter properties. This can be exploited (see
section 6.4) to estimate network connectivity.

¢ Thenetwork models used in this study predict the magnitude of input
correlations and demonstrate that the transfer of small correlation to
spike output is weak. Section 6.5 relates these model predictions to
the experimental literature.

6.1 Summary of Results. We analyzed how the joint statistics of linearly
filtered spike trains (shot noise) depend on the statistics of the underlying
point processes and the properties of the filter kernels. Although the analysis
presented in section 2.1 is a straightforward generalization of standard
shot-noise theory (Papoulis & Pillai, 2002), the consequences of spike train
filtering (e.g., by the synapses, neurons, or the measurement technique) for
the dynamics and interpretation of correlations in neuronal systems have
to our knowledge never been explicitly considered.

The one-dimensional shot-noise correlation functions result from the
spike train correlation functions by convolution with the deterministic filter
(auto-)correlation. In consequence, standard second-order statistical mea-
sures like the variance and the covariance generally depend on the filter
properties in a nontrivial way. The normalization of the covariance by the
geometric mean of the variances does not compensate for this in general.
Only for Poisson point processes with delta-shaped correlation function,
this dependence is trivial (i.e., multiplicative). Prominently, the widely used
spike count correlation coefficient depends on the bin size if the spike trains
are not Poissonian, even under optimal conditions like stationarity across
trials and time. Similarly, correlation coefficients between synaptic con-
ductances, currents, or membrane potentials are modulated by the time
constants of the synapses or the membranes, respectively.

The coherence, in contrast, is filter independent if each signal can be
described as a simple shot-noise process that arises from a linear convolu-
tion of a single (compound) spike train with some filter kernel (e.g., spike
counts). Therefore, coherence measurements often constitute a less ambigu-
ous quantification of neuronal interactions. In this light, it is not surprising
that the literature frequently refers to the zero-frequency coherence (i.e.,
the normalized cross-correlation area) also as the correlation coefficient.
Although this definition differs from that of standard textbooks (Hollander
& Wolfe, 1999; Feller, 1971), it has the advantage that this measure is not
sensitive to filtering by a joint linear kernel. In many cases, the analyzed
signals result from superpositions of several spike trains filtered by dif-
ferent kernels. Here, both the correlation coefficient and the coherence de-
pend in general on the filter characteristics (even if the filters are linear).
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Intracellularly recorded membrane currents or potentials, for example, arise
from filtering of presynaptic spike trains at different synapses, which vary
not only in their amplitude (weight) but also in their time constants. Since
the number of synapses of a cortical neuron is large, it may be a reason-
able approach to replace the individual filters by an average kernel (mean-
field description). The same holds for mass signals reflecting the activity of
large neuron populations (LFP, EEG). Although we did not further analyze
such scenarios in this study, we conclude that there are several applica-
tions where the assumption of identical filter kernels may constitute a good
approximation.

Both the correlation coefficient and the coherence generally depend on
not only the joint spike train statistics but also the marginal second-order
statistics of the individual point processes. It is therefore questionable
whether these quantities qualify as appropriate measures for the co-relation
or cooperation between two sources. This problem is difficult to address in
a general context. We therefore focused on a specific type of correlations
caused by overlapping presynaptic neuron populations in neural networks.
Here, the relative common input strength o = v./v, that is, the ratio be-
tween the compound firing rate v, of the common sources and the total
rate v, is a well-defined quantity that also corresponds to the (functional)
connectivity of an underlying network. We showed that the high-frequency
coherence can, under simplifying assumptions, provide a direct measure of
the common input strength for a large class of point processes.

For simplicity, we based our study on the assumption that the spike train
filtering is linear. While this is definitely the case for the commonly used
spike count measure, it has to be investigated in how far nonlinearities,
caused, for example, by shunting effects, voltage-dependent conductances,
or synaptic dynamics (depression, facilitation), affect correlations between
intracellularly recorded signals (synaptic currents, membrane potentials)
or mass signals like local-field potential, EEG, or fMRI BOLD recordings. In
general, nonlinear filtering leads to a dependence of the coherence on the
filter properties.

The estimation of the network connectivity in sections 4 and 5 relies
on the assumption that all synapses are reliable. Synaptic failure causes
a decorrelation of inputs: if one assumes that spikes are transmitted with
a probability p < 1—that both the common and the disjoint input pro-
cesses are independently diluted—the common-input strength would be
effectively decreased by this factor p. Hence, an estimation of the network
connectivity by an analysis of input correlations requires knowledge of the
synaptic reliability.

As pointed out in section 3.5, the presence of delay distributions is
critical for our results on high-frequency coherences because they typically
cause a decrease in the cross-spectra at high frequencies that is not com-
pensated by a drop in the power spectra. On the one hand, this complicates
the reconstruction of the common input strength from measured auto- and
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cross-correlations. On the other hand, however, the same analysis may
provide a way to estimate delay distributions from parallel intracellular
recordings.

6.2 Timescale of Correlations. Spike train correlation functions and the
corresponding cross-spectra are generally structured for various reasons.
Depending on the measurement timescale, these correlations can be ob-
served only in limited frequency bands. In most cases, this is a minor re-
striction for the experimenter measuring correlations between spike trains
(spike counts) of individual neurons, because the average interspike inter-
val of single unit recordings typically exceeds the bin size used to compute
spike counts (Aertsen et al., 1989: i = 1.5-50 ms; Vaadia et al., 1995: 30-
70ms; Lampl et al., 1999: 1 ms; Sakurai & Takahashi, 2006: 0.1-1 ms). There
are also examples in the literature where the bin size is much larger than
the mean interspike interval (Zohary et al., 1994: h = 2, firing rates up to
50s71). According to our results in sections 2.3 and 3.3, one can expect that
the resulting spike count correlation coefficients in these cases depend on
the marginal spike train statistics.

The quantification and interpretation of correlations become particularly
problematic if the compound activities from large populations of neurons
are compared. This is relevant for all signals reflecting synaptic inputs origi-
nating from several hundreds or thousands of presynaptic cells (e.g., synap-
tic currents, membrane potentials, local field potentials, optical imaging).
On the one hand, the net firing rates of these superimposed presynaptic
spike trains are in the range of 102, ..., 10*s™! and therefore require high
recording resolutions. On the other hand, this compound spiking activity
can be observed only after low-pass filtering by the synapses or the cell
membranes with time constants in the range of several milliseconds. Thus,
the high-frequency components of the joint activity are suppressed. We
showed that the correlation coefficient cannot compensate for this, but a
normalization in the frequency domain (i.e., coherence) can.

A drawback of using coherence is that correlation measures defined in
the frequency domain always require some sort of time averaging (Fourier
integral). Thus, time-resolved coherences can be computed only with a
finite temporal resolution (see, e.g., Figure 1C). As a result correlations in
the time domain may still be more appropriate (e.g., the joint PSTH; see
Aertsen et al., 1989) if a high temporal resolution is desired.

6.3 Dynamics of Correlations. It is well known that correlations be-
tween spike trains can undergo dynamic modulations in relation to the
experimental protocol (Aertsen et al., 1989; Vaadia et al., 1995; Griin,
Diesmann, & Aertsen, 2002; Kohn & Smith, 2005; Sakurai & Takahashi,
2006). The mechanisms generating the observed changes in correlation,
however, are not sufficiently understood. In the standard interpretation,
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time-dependent correlations reflect the activation of different “cell as-
semblies” or subnetworks inducing firing rate modulations in afferents
common to both target neurons. There are, however, alternative explana-
tions. We demonstrated that modulations in the filter properties of synapses
or membranes, such as changes in their time constants, can cause changes
in correlation coefficients not only at the level of synaptic currents or mem-
brane potentials but also at the level of spikes. Dendritic integration proper-
ties, for example, are governed by the amount of synaptic input (Destexhe
et al., 2003). In the presence of massive synaptic bombardment, the ef-
fective membrane time constants of neurons are decreased (Kuhn et al.,
2004; however cf. Waters & Helmchen, 2006). Furthermore, we showed that
changes in correlations can also be caused by alterations in the presynaptic
marginal second-order statistics. Even if the firing rates of common and
disjoint presynaptic sources remain constant, changes in the interval statis-
tics can induce an increase or a decrease of correlations in signals generated
by the postsynaptic target cells. We pointed out that global oscillations
in the presynaptic neuron populations might play an important role here.
Changes in the oscillation frequency can effectively modulate the amplitude
of measured correlations (see also Halliday, 2000).

In order to understand why groups of neurons synchronize or desyn-
chronize under different stimulus conditions or in different phases of an
experiment, it is essential to disentangle these different effects. Because the
coherence is less sensitive to linear filtering, it may provide a tool to clarify
how far changes in the neuronal filter properties contribute to the dynamics
of correlations. This approach is, however, meaningful only if the modula-
tion of the filter properties is slow compared to the length of the analysis
windows used to compute time-resolved coherences. Otherwise the filters
cannot be considered as time invariant, which is a necessary constraint for
the coherence to become filter independent.

6.4 Revealing Network Structure from Intracellular Signals. Com-
mon presynaptic input is one of the major causes of correlated activity
in neural networks. Depending on the network architecture, the presy-
naptic neuron populations of two or more target cells generally overlap
to some extent. Spikes emitted by these common sources arrive at the
target cells approximately simultaneously and give rise to more or less
broadened central peaks in the cross-correlation functions of postsynaptic
membrane potentials (Lampl et al., 1999) or spikes (Aertsen et al., 1989;
Vaadia et al., 1995; Shadlen & Newsome, 1998; Bair et al., 2001; Kohn &
Smith, 2005; Moreno-Bote & Parga, 2006). The amplitude and temporal
structure of these correlations are to a large extent determined by the rela-
tive common input strength, which is closely related to the effective network
connectivity, and the distribution of spike transmission delays. The mea-
surement and analysis of common-input correlations therefore seem to be
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a promising approach to study the functional structure of the underlying
network.

We showed that under natural conditions, the interpretation of mea-
sured correlation functions or correlation coefficients in terms of network
structure is problematic due to their dependence on the filter properties
and the marginal statistics of the presynaptic spike trains. In general, this
holds also for correlations measured in the frequency domain. Only under
simplified conditions (identical linear filters, homogeneous spike transmis-
sion delays, uncorrelated spiking activity) can the high-frequency coherence
between intracellularly recorded signals (synaptic conductances, currents,
membrane potentials) be used to measure the network connectivity re-
gardless of the network state. Here, the notion “high frequency” refers
to frequencies at which the spectra of the compound input point pro-
cesses become flat and are not affected by the dynamics of the system.
As in real-life situations only the shot-noise spectra (but not the underly-
ing point-process spectra) are observable, it is necessary to compute the
shot-noise coherence for a broad frequency range and to find out where
it approaches a constant level. As discussed in section 3.5, delay distri-
butions impose a serious problem here: they cause a broadening of the
central peak in the cross-correlation functions, thereby destroying their
high-frequency components. The coherence therefore decays to zero at fre-
quencies that roughly correspond to the inverse width of the delay distri-
bution. Assuming a delay distribution width of about 10 ms (see Swadlow,
1998) would result in a coherence drop at about 100 Hz. Since the dynam-
ics of cortical networks typically still occupies this frequency range, it is
unlikely to find an intermediate frequency band in which the coherence
is affected by neither the network dynamics nor the delay distribution. In
a realistic scenario, an estimation of the network connectivity from coher-
ences therefore requires knowledge of the delay distributions. The rela-
tion between delay distributions and input coherences could, on the other
hand, be used to measure delay distributions from pairwise intracellular
recordings.

There is growing experimental evidence that local cortical networks are
not random (Song, Per, Reigl, Nelson, & Chklovskii, 2005). Systematic par-
allel intracellular recordings from neurons at different locations and poten-
tially in different layers can help to uncover the joint connectivity statistics.
Yoshimura et al. (2005) and Yoshimura and Callaway (2005), for example,
utilized correlations between intracellularly recorded signals in in vitro
preparations to show that specific fine-scale subnetworks are embedded
into larger-scale functional columns. Our findings can be used to verify and
extend these studies also for in vivo preparations.

6.5 Correlations in Cortical Networks. The network model in section 5
predicts that the input correlations are predominantly determined by the
network connectivity o (see also Kriener et al., this issue). According to
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anatomical data (Abeles, 1991; Braitenberg & Schiiz, 1991; Hellwig, 2000),
we would therefore expect average input correlations of about 0.1 in a
cortical volume of roughly 1 mm?. For the cat visual cortex, Lampl et al.
(1999) reported a broad range of membrane potential correlations with a
mean of about 0.4. There are several possible reasons for this deviation
from our model. First, as indicated above, the topology of local cortical
networks differs from a random connectivity (Song et al., 2005). Second,
the distributions of in-degrees (number of inputs per neuron) are certainly
much broader than assumed in this study, and the probability of finding
a common presynaptic neuron shared by two (observed) target cells may
significantly differ from chance level o2. Third, our network model does
not exhibit nonstationarities in time, which can arise, for example, from the
local dynamics or from time-dependent external inputs. In section 4, we
showed that such nonstationarities can effectively modulate the amplitude
of correlations. Fourth, spatially correlated external inputs from other cor-
tical or subcortical areas were neglected (see Roy & Alloway, 2001; Bruno
& Sakmann, 2006). The distribution of input correlation coefficients would
certainly be wider and shifted toward higher values if these different aspects
were taken into account.

The results of sections 4 and 5 and those of several other theoretical stud-
ies (Shadlen & Newsome, 1998; Stroeve & Gielen, 2001; Tetzlaff et al., 2003;
Moreno-Bote & Parga, 2006; de la Rocha, Doiron, Shea-Brown, Kresimir,
& Reyes, 2007; Kriener et al., this issue) suggest that the transmission of
small input correlations to output spike correlations is rather weak. Even
for networks with connectivities of 0.4 (and therefore input correlations
of 0.4), we observe in section 5 average output correlation coefficients on
the order of 1073. In contrast, many experimental studies reported that
cortical neurons exhibit stimulus-unspecific spike correlation coefficients
of the order of 0.1 or higher (Zohary et al., 1994; Vaadia et al., 1995;
Gawne & Richmond, 1993; Shadlen & Newsome, 1998; Bair et al., 2001).
This disagreement is to some extent presumably also due to the fact that
several features of cortical connectivity have been neglected in our model
(see above). Furthermore, in the experimental studies mentioned here,
spikes from different units were recorded with a single electrode. Thus,
the observed correlations refer to neurons within a radius of not more than
50 um (Henze et al., 2000; Sakurai & Takahashi, 2006). Stimulus-unspecific
spike correlations (shared input correlations) of neurons recorded on
different electrodes are typically weaker (Is'o, Gilbert, & Wiesel, 1986;
Gochin, Miller, Gross, & Gerstein, 1991; Vaadia & Aertsen, 1992). Our
model in section 5 does not account for neighborhood relationships
between neurons and therefore cannot reproduce distance dependencies
of correlations. It rather describes an average picture at a scale of about
1mm3. While the apparent discrepancy between experiment and model
results remains a puzzle, at the spatial scale discussed in this article, the
predicted small average spike correlation seems plausible.



2178 T. Tetzlaff et al.

Appendix A: Estimation of the Common Input Strength for Correlated
Spike Trains

In section 3.2 we assumed that common and disjoint processes are mutually
uncorrelated. However, the results of section 3.4 can be generalized to the
case of correlated spiking—for /() # 0 (p,q € {c,d;,d;}). For Poisson
processes with delta-type correlations, the covariance functions read

prq(f) =Tpg/ vaq8(7)~ (A.1)

Here, r,; denotes the pairwise correlation coefficient between the processes
&,(t) and &, (t). The corresponding spectra are constant

Wpg (@) = 1pg /VpVy.- (A2)

We can generalize this to a broader class of processes for which equation
A.2 still holds for large frequencies,

lim W, () = 7pg /VpVyg. (A.3)

w—>00

Similar to section 3.1, let us assume that the disjoint processes have identical
autocorrelations (Y4,4,(t) = fbd/.d](r)) and therefore identical rates v;. For
simplicity, we further assume that all correlation coefficients are identical
(r =7y Y{p,q}). In this case, the high-frequency coherence between the
input signals

&iyj(t) = &(t) + &4, (£) (A4)
becomes

. . \I’cc(w) + \pd;d] (w) + \pcd;(w) + \pdic(w)
lim x(w) = lim

w—>00 w—>00 \I/CC (w) + ‘Ildzdi (w) + lIch] (w) + \Ild,.c(w) (A5)
_ Ve +1rvg + 2r./vevg ’
T vt v+ 2r S oovg
With v, = av and vy = (1 — «)v, this can be written as
1 -11 - 2ry/a~1(1 —
lim k(o) = g ¢ d =@+ 2rve il —a) (A.6)

000 1+2ra(l —a)

Thus, by solving equation A.6 for «, the common input strength can
be estimated from the high-frequency coherence if the spike correlation
coefficient r is known. Note that according to equation A.3, r can be
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determined by measuring the high-frequency coherences of the spike sig-
nals: img,, o0 [V g (@)1/1/ ¥ pp (@) ¥gq (o).

Appendix B: Count Covariances for Jittered Correlations

Here we derive the spike count correlation coefficient r;; for two Poissonian
spike trains with rectangular and gaussian cross-covariance function. The

results are shown in Figure 5.

B.1 Rectangular Cross-Correlations. For a rectangular covariance
function,

- X _g <1 <o,
Wij(T)(r) = | 20 (B.1)
0 else

the count covariance is according to equation 2.15 given by

1
— K? h<o
Cij = vc 20 o . (B.2)
<h - 7) h>o
2

After normalizing ¢; j by the count variance ¢;; = vh and with o = v. /v, the
correlation coefficient reads

i h<o
rij =« 20 o . (B3)
(1 — —) h>o
2h

Figure 5A shows how r;; depends on the bin size & for o = 2ms and 16 ms
and o = 0.5.

B.2 Gaussian Cross-Correlations. If the spike covariance function has
a gaussian shape,

2
Vij(z) = n(v,0) := \/% exp (‘#) , (B.4)

the count covariance becomes

Gij = 2v, [%erf (%) — o2 [n(0, ) — n(h, a)]] , (B.5)
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where erf(-) denotes the error function

erf(x) = \% /:dx’ exp(—x?). (B.6)

Thus, the count correlation coefficient is given by

h 202
rij=ao [erf (E) - [1(0, o) — n(h, C’)]] . (B7)

Its bin-size dependence is illustrated in Figure 5B (¢ =2ms and 16 ms,
a =0.5).
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