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ABSTRACT

Background: Modern electrophysiological experiments are moving towards closing the loop, where the extrinsic
(behavioral) and intrinsic (neuronal) variables automatically affect stimulation parameters. Rodent experiments
targeting spatial behavior require animal 2D kinematics to be continuously monitored in a reliable and accurate
manner. Cameras provide a robust, flexible, and simple way to track kinematics on the fly. Indeed, several
available camera-based systems yield high spatiotemporal resolution. However, the acquired kinematic data
cannot be accessed with sufficient temporal resolution for precise real-time feedback.

New method: Here, we describe a novel software and hardware system for movement tracking based on color-
markers with real-time low-noise output that works in both light and dark conditions. The analog outputs
precisely represent 2D movement features including position, orientation, and their temporal derivatives, ve-
locity and angular velocity.

Results: Using adaptive windowing, contour extraction, and rigid-body Kalman filtering, a 640-by-360 pixel
frame is processed in 28 ms with less than 4 ms jitter, for 100 frames per second. The system is robust to outliers,
has low noise, and maintains a smooth, accurate output even when one or more markers are temporarily missing.
Using freely-moving mice, we demonstrate novel applications such as replacing conventional sensors in a be-
havioral arena and inducing novel place fields via closed-loop optogenetic stimulation.

Comparison with existing method(s): To the best of our knowledge, this is the first tracking system that yields
analog output in real-time.

Conclusions: This modular system for closed-loop experiment tracking can be implemented by downloading an
open-source software and assembling low-cost hardware circuity.

1. Introduction

widely-used method is recording with a single overhead camera. This
approach can be used with or without markers attached to the subject

Compared to manual administration of experiments, automated
experimental designs have obvious advantages in terms of throughput,
accuracy, reproducibility, experimenter effort, and robustness to
human error. Furthermore, automated systems enable closed-loop ex-
periments such as manipulating neuronal activity according to animal
behavior (Wiener et al., 1989). In behavioral experiments, especially
those targeting spatial memory and navigation, the most important
extrinsic variables are the head location and orientation of the animal
(Grieves et al., 2016; Moser et al., 2015; O’Keefe and Dostrovsky,
1971). Multiple approaches have been used to obtain these movement
features including a grid of motion sensors (Opto-Varimex system;
Columbus Instruments, USA) and piezoelectric sensors on the floor
(Flores et al., 2007). Yet arguably the cheapest, most robust, and most
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(Maghsoudi et al., 2017; Mathis et al., 2018); clearly, markers increase
target salience at the cost of limiting the number of targets and reducing
freedom of movement. The camera-based technique has been used for
over thirty years (Skaggs et al., 1998; Wiener et al., 1989), and multiple
commercial (e.g. ANY-maze; CinePlex, Plexon; EthoVision, Spink et al.,
2001; OptiTrack, NaturalPoint Inc. U.S; NetCom API, NeuraLynx, U.S.)
and open source (e.g. Bonsai, Buccino et al., 2018; Lopes et al., 2015;
DeepLabCut, Mathis et al., 2018; MouseMove, Samson et al., 2015;
Pyper) systems are available. These tools are useful for behavioral
logging and offline analyses but typically do not support any online
functionality. Those that do, either enable only limited real-time output
(collision of subject position with a given region-of-interest) or are
tailored to a specific platform. In sum, presently-available tracking tools
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Fig. 1. System design. (A) Processing flowchart from input (camera) to output. The tracked subject is defined as an Object consisting of Marker/s. Object kinematic
features are processed and forwarded to a microcontroller where they are converted to analog and digital signals. (B) Block diagram of the system. (C) Image

N
coordinate frame and definitions of the six kinematic features. Origin is at the top left corner. P represents 2D object location. The angle (¢y) of the velocity vector
(ﬂ) is movement direction, and IIVZII is speed. Orientation (6;) is the angle of the normal to the line connecting two markers, and angular velocity (ék) is its time
derivative. (D) System output (six kinematic features) during a 50 s recording of a mouse running on a linear track.

are suboptimal for low-latency closed-loop experiments that rely on
detailed kinematics such as orientation, velocity, or combinations
thereof.

In the present work, we developed a marker-based system (Fig. 1A)
that provides accurate high-resolution (100 samples/s, 4.5 mm/pixel)
real-time (28 + 3 ms delay) feedback of animal position, orientation,
and their temporal derivatives (velocity and angular velocity). These
features are conveyed as real-time analog (0-5 V with 12-bit resolution)
signals that can be easily integrated with other variables such as neu-
ronal recordings and be used for closed-loop manipulations such as
electrical or optogenetic stimulation. Furthermore, the system outputs
digital signals to indicate whether the animal is within user-defined
regions of interest. Implementing the system is simple, and involves
downloading an open-source software and assembling low-cost hard-
ware circuity.

The system (Fig. 1B) for tracking a subject (e.g. an animal) consists
of three blocks: (1) a camera; (2) a PC that runs the software (“Spotter”)
and controls the downstream hardware system; and (3) custom
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hardware (“Movement Controller”, MC), outputting low-noise digital
and analog signals. In the implementation described here, a Digital
Signal Processor (DSP; RX8, Tucker-Davis Technologies) and a preci-
sion Current Source (CS; Stark et al., 2012) are used for closing the loop
by applying intra-cortical illumination, resulting in neuronal activation
of the tracked rodent. In this use case, the rodent has an implanted
head-stage with two color-markers (brightly-painted blobs/LEDs).
While the system works well in both light and dark conditions, each
marker must have a color that is clearly distinct from the background
and from other markers. The software is a Python-based application
that uses a modular structure consisting of two main parts: a command
line application, and an optional graphical user interface (GUI).

To provide modularity, three distinct levels of tracking are defined:
Markers, Objects, and Regions of Interest (ROIs). Markers are the ele-
mentary tracking units, representing a color blob or an empty contour
such as an LED. Markers are defined by a set of four parameters (hue,
saturation, value, and size) that are used by the detection algorithm
(Algorithm 1). An Object is composed of linked Markers and has up to
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six features that can be routed to analog outputs: (1) x position; (2) y
position; (3) orientation ; (4) speed IIV1l; (5) movement direction ¢; and
(6) angular velocity 8. The first three features are first-order in the sense
that they can be determined from a single frame, whereas the last three
are second-order, based on the temporal derivative of multi-frame data
(Fig. 1C). Note that 6 and & are defined only for multi-marker objects.

Although the detection algorithm typically results in a highly ac-
curate single-frame color-blob detection rate, continuity is not imposed,
and thus multi-frame tracking is typically erratic. To account for these
and other sources of noise, we designed an adaptive denoising and lo-
cation estimation algorithm. The procedure (Algorithm 2) is based on
the Kalman filter (Kalman, 1960), a real-time data fusion procedure
that combines noisy measurements with estimates, resulting in
smoother and more accurate output.

The last level of modularity is a Region of Interest (ROD), which is a
part of the image described by one or more geometric shapes (circles,
lines, and/or squares). Linking an ROI to an Object will continuously
check for collision between Object location and the ROI. The real-time
state of this check can be emitted as a binary (digital) output.

2. Results

The system can track in real-time (28 * 3 ms delay) the simulta-
neous movement of up to four Objects (e.g. behaving animals) and
maintain up to sixteen ROIs (see Application I below). With a camera,
the software can work as a stand-alone logger that may record (and
later play back) 2D kinematics. Integration with the MC yields real-time
analog and digital outputs available for data acquisition (DAQ) and/or
processing on the fly. The generic MC design (Fig. 7) allows scaling the
number of tracked features routed to analog outputs in real-time. All
elements are open source, and available online (https://github.com/
gasparnori/Spotter) under a Creative Commons Attribution-Non-
Commercial-ShareAlike 4.0 International license.

2.1. Camera and computer

The system can work with any USB camera. Specifically, we tested
three different cameras: (1) a machine vision camera (acA1300-200uc
with C125-0618-5M lens, Basler); (2) a high-resolution webcam (Q2F-
00013 LifeCam, Microsoft); and (3) a VGA webcam (C170, Logitech).
Unless specified otherwise, measurements were made by the Basler
camera. This camera was chosen due to its high maximal temporal
resolution (203 fps), fast communication protocol (USB 3.0), and the
fact that it works well in low light conditions. While the default ac-
quisition rate during standalone operation is 100 fps, instantaneous
frame rate may vary due to OS control of CPU resources and RAM
buffering.

Performance was assessed on several 64-bit machines: (1) 8-core
(i7-5960 X 3.0 GHz) with 32GB RAM running Windows 7; (2) 4-core
(i7-6700 K, 4 GHz) with 16 GB RAM running Ubuntu 14.04.3; (3) dual-
core (i5-7260U, 2.2 GHz) with 4 GB RAM running Windows 7; and (4)
dual-core (i5-7260U, 2.2 GHz) with 8 GB RAM running Windows 10.
While the software functions well on all configurations, the most fa-
vorable hardware configuration is the Basler/i7 combination, whereas

Table 1
Temporal statistics (resolution and delay) for different computer/camera
combinations. All measurements were done in fast mode.

Basler acA1300 Logitech ¢170

8 cores, 32GB delay [ms] 29 + 16 60 + 11
rate [fps] 132 = 67 30 =3
2 cores, 4GB delay [ms] 43 + 8 58 + 11
rate [fps] 66 *+ 34 30 = 3
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Table 2
Temporal statistics (resolution and delay) for different speed modes in the
fastest and slowest computer/camera combinations.

8-core (i7), Basler camera 2-core (i5), Logitech camera

delay [ms] fps delay [ms] fps
Normal mode 37 = 60 = 4 57 =11 30 =3
Fast mode 29 £ 16 132 + 67 575 = 11 30 £3
No GUI 27 * 100 + 8 58 + 11 30 £ 3

the least involved is Logitech/i5. Unless specified otherwise, results
were obtained using the 8 core/32 GB machine running Windows 7
(Table 1).

2.2. Temporal properties: delay, jitter, and resolution

The system can work in three modes, distinguished mainly by pro-
cessing time: (1) normal mode, with GUI; (2) fast mode, with GUI (the
default mode); (3) a no-GUI fast mode. In the normal mode, each frame
is used for both movement tracking and GUI update. In the fast mode,
each frame is used for movement tracking and, independently and in
parallel, the GUI is updated only once every 20 ms. This reduces the
delay and increases the mean frame rate (Table 2) at the cost of in-
creased frame-to-frame variability. In the no-GUI mode, the GUI is not
updated at all, whereas movement tracking and analog and digital
outputs are maintained. Different modes may suit distinct use cases.

To synchronize the tracking system with any other data recorded on
the DAQ such as neuronal, optical, and behavioral signals, an external
synchronization signal (1 Hz, 50% duty cycle square wave) generated
by a custom 555 circuit was used. This sync signal was recorded on the
DAQ as is, and also used to blink a blue LED within the camera field of
view. The tracking system was configured to detect blue blinks as an
Object within an RO, and routed these detections to a digital output
recorded by the DAQ. Since the operation is sequential and digital
outputs are set last in each frame, the temporal difference between (1)
the rising edge of the sync signal recorded directly by the DAQ, and (2)
the rising edge of the digital signal representing the blue ROI provide an
upper bound estimate of the delay of the entire system (Fig. 1B):
camera, PC, microcontroller, hardware circuitry, and inter-block com-
munication.

Temporal resolution was measured using a digital signal (generated
by Spotter) indicating frame onset. Each temporal resolution and delay
measurement was carried out over 8-10min for every camera/com-
puter combination and each speed mode. The results are summarized in
Tables 1 and 2, and full distributions are shown in Fig. 2. In the most
favorable scenario, temporal resolution was 100.5 = 7.7 fps (mean

+ SD), and the delay of the system was 27.2 = 3.4 ms. Notably, even
the least favorable configuration provided stable frame rate (30 + 3
fps) and delay (58 = 11 ms).

2.3. Spatial properties: scaling and resolution

All features that can be linked to analog outputs (position, or-
ientation, speed, movement direction, and angular velocity) are mea-
sured on a linear scale from 0 to 639, where 639 is the maximal value
that can be measured in the system (Fig. 1C). The system uses 12-bit
DACs (digital to analog converters; MCP4921, Microchip Technology)
with low linearity errors (voltage offset of —3.8 mV) and a 0 to 4.64V
output, representing 640 levels at a step resolution of 7.26 mV/pixel.

When imaging a plane from a single point, the image is bound to be
distorted at the edges. The precise distortion depends on setup geo-
metry, lens, and camera. Yet for a given workspace, distortion can be
reduced by elevating the camera at the cost of spatial resolution. We
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Fig. 2. Temporal properties. Distribution of temporal delay (A) and resolution (B) measurements for the fastest and the slowest combinations in the fast mode.
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Fig. 3. Field of view. Image distortion for a camera 280 cm above arena. Spatial resolution is higher at the center of the workspace, just below the camera. The

maximal distortion, at a 1 m radius, is less than 6%.

placed the camera 280 cm above the floor to record the entire 2 X 2m
arena, yielding a viewing half-angle of 19.6°. To empirically quantify
spatial resolution and distortion, a two-Marker Object was connected to
the edge of a rotatable 20 cm long rigid object. The object was posi-
tioned at various locations on the floor of the experimental room and
rotated such that object length could be measured in pixels. Directly
below the camera (i.e. at the center of the field of view), spatial re-
solution was 4.36 mm/pixel. One meter away from the center, spatial
resolution was 4.62 mm/pixel (Fig. 3). This distortion (maximum:
(4.62 — 4.36)/4.36 = 6%) is an inherent caveat when imaging via a
convex lens: given a particular camera and lens, distortion magnitude
depends mainly on camera height. To obtain precise estimates of
movement kinematics, the values calculated by the system should thus
be multiplied by a position-dependent scaling factor. Such corrections
were not implemented in the present system due to the small magnitude
of the distortion.

2.4. Maintaining a continuous smooth output for a noisy input

For objects moving freely in a reflection- and obstacle-free work-
space, the detection process (Algorithm 1) typically results in a high
single-frame color-blob detection rate (> 99%). However, for a teth-
ered mouse equipped with head-mounted LEDs running on a linear
track, both LEDs are detected only in "75% of the frames. Furthermore,
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continuity is not imposed and thus features that require combining
information from multiple frames (e.g. speed) may be erratic.

We identified three particular sources of inter-frame noise. First, an
object may be temporarily obscured, for instance by a cable, causing
loss of one or more markers. Second, changes in ambient illumination
level or non-homogeneous arena topology can cause false detections
(e.g. due to object reflections). Third, imperfections in the system (e.g.
finite camera resolution) and user-defined parameters (e.g. poorly-de-
fined threshold values) may cause spatial jitter such as perceived
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Fig. 4. Denoising effect. Position and speed with and without Algorithm 2.
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Table 3
Quantification of denoising effect. The ratio between signal to noise ratio (SNR)
measured before and after applying Algorithm 2. For a signal x, SNR: =LPF(x)/
(x-LPF(x)), where LPF(x) is x passed through a 10 Hz lowpass filter (4-pole
Butterworth).

x Y 6 vl @ 6

SNRpefore 1.67 1.79 26.5 58.7 5.73 59.1
SNRafter

movement of a perfectly stationary object. To account for these and
other possible sources of spatial noise, we designed a denoising and
location estimation procedure based on a Kalman filter (Algorithm 2),
which can be enabled independently for each Object.

Without the filter, some frames are completely lost since both
Markers (LEDs) are missed and no tracking is possible in 3 + 1% of the
samples (mean * SD over 12 recordings). In 25 *= 3% other cases,
only one LED is detected. In all of these cases, only position and speed
may be tracked, whereas head orientation and angular velocity simply
cannot be defined. Furthermore, small deviations in position are greatly
amplified during temporal differentiation, inducing large deviations in
speed and angular velocity.

As seen in Fig. 4, the denoising procedure (Algorithm 2) eliminated
all errors caused by missing values and smoothed the deviations.
Quantitatively, this resulted in an improved signal to noise ratio for all
features, especially velocities (Table 3; p < 0.001, Mann-Whitney U-
tests).

2.5. Application I: sensor free behavioral arena

One of the main advantages of real-time digital feedback is the
possibility to create sensor-free behavioral arenas. The following two
experiments demonstrate the simplicity of this concept, using digital
output to replace apparatus sensors. In Application Ia, four line ROIs
were defined in proximity to four photosensors positioned on a linear
track (150x 4.5 cm), and the correspondence between sensor and ROI
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collision events was measured (Fig. 5A).

Whenever a mouse passed a sensor, two digital pulses were gener-
ated: one by the sensor and one by the tracking system. The mouse ran
across the track 98 times (left to right); during this time, sensor-ROI
correspondence was 1:1 (392 sensor crossings and 392 ROI detections)
with a 31.2 * 21.8 ms delay. This delay is only 2.5 ms longer than the
system delay (28.7 = 15.6ms; p = 0.017, Wilcoxon’s signed rank
test). The extra delay (and jitter) may be due to the difference in width
between the sensor beam and a line ROI, variability in running speed,
the distance between the detection triggers (tip of the nose vs. Marker
on the head), and/or photosensor noise. For all practical purposes, the
two types of signals are interchangeable, and both can be used to gate
neural stimulation or control behavioral feedback (e.g. reward de-
livery).

Indeed, in Application Ib three non-consecutive, partially over-
lapping ROIs were used to govern reward delivery on the linear track,
effectively replacing the four photosensors. The ROIs were placed on
top of each other, and their activation status was interpreted as digital
bits such that an object colliding with all three ROIs generates one
“word” (111), while an object colliding only with the first two ROIs
generates another word (110), and so on (Fig. 5Bi). These words were
processed on a microcontroller, the output of which was used to open
solenoids valves, dispensing liquid reward for the mouse. Behavior was
similar during ROI- and photosensor-controlled runs (e.g. track tra-
versal durations: 2.2 = 0.499 vs. 2.25 * 0.521s, p = 0.165, Mann-
Whitney U-test; Fig. 5Bii). Using n = 4 digital outputs as a binary code
(0001-1111; with 0000 representing “no sensors crossed”), up to 2"-
1 = 15 sensors can be replaced. This approach is scalable: 8 digital
outputs would enable mapping 256 non-overlapping regions in space,
replacing 255 sensors.

2.6. Application II: optogenetic activation in a place-field model

Since the system can output analog signals in real-time, spatial
spiking can be synthetized by selectively depolarizing neurons ac-
cording to a place field model (Fig. 6A). While a freely-moving mouse
traversed a linear track, 2D kinematics were monitored and the output

A i 10 ..
ROI'1 /'\ ROI 2 ROI 3 ROI 4 =Y

1 gl &= ! 1 1 . ,.\"

X [ [ | ) T ki

T g I T T ] o o

Qo . o
10 cm E s ]

= 2 ! i
2 (Y S ¥
1 = C R b

w o
iy i
oLtk i I

-100 0 100 0 scaled 10 I8l 5
ROI-to-sensor difference [ms]
Trial duration
B j ii by PTs
O _ == S
001 010 011 100 101 110 111
d 2 3 4

Trial duration [s]

Fig. 5. Sensor-free behavioral arena. The apparatus is a linear track, consisting of a 150 x 4.5 cm runway between two square reward platforms, with four equally-
spaced photosensors. (A) Replacing sensors with line ROIs. (i) Linear track with line ROIs placed close to the sensors. (ii) Histograms showing sensor-to-ROI time lag
for each pair. (iii) ROI (bright colors) and sensor (dark colors) crossing times during each trial. Trials, defined as the time between the first and last sensor crossing,
were scaled to the 0-1 range and sorted according to duration (horizontal bars at right). (B) (i) Partially-overlapping rectangular ROIs covering the linear track
governing reward delivery, instead of sensors. (ii) Histograms show same-animal track traversal times during an ROI-controlled (blue) and a phototransistor-

controlled (red) session.
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with closed-loop stimulation (30 trials per run direction).

was forwarded to a DSP. The DSP compared real-time position and
orientation with a place field model (essentially, a stimulation intensity
lookup table), and issued a voltage command to a current source
driving a head-mounted LED coupled to an implanted optical fiber,
located "50 pm above the CA1 pyramidal cell layer (Fig. 6B). Thus, 1-80
pyramidal cells (Stark et al., 2014) were depolarized according to the
real-time location and orientation of the animal, effectively trans-
forming some into cells with spatially-selective firing (Fig. 6C).

3. Methods
3.1. The software: spotter

Spotter is a modular library written in Python 2.7. The software
grabs a new frame from the camera utilizing OpenCV 2.4, an open-
source machine vision library (Bradski, 2000). The frame then passes
through a processing module; results are communicated via a serial
interface to an external microcontroller. User input can be added
through the command line or through the GUI, built with PyQt4 (Qt
4.8, The Qt Company).

3.2. Finding marker positions

Algorithm 1is based on color segmentation. It identifies user-defined
Markers on a given frame using adaptive windowing. The procedure
takes an RGB (red, green, blue) frame from the camera and converts it
to HSV (hue, saturation, value) color space. This is particularly useful
when working with bright objects such as LEDs which can saturate the
RGB sensors. To minimize CPU time dedicated to detection, an adaptive
window is used. For each tracked Marker, detection is attempted within
a small square window (25 X 25 pixels) centered on the last detected
location of the object. This window size was determined by two op-
posing constraints: it should be as small as possible to reduce compu-
tational load, and sufficiently large to account for the fastest changes in
marker position. If the detection is unsuccessful, the window size in-
creases for the next frame. Only expanding the window in the next
frame prevents false detections and thus coising.
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Algorithm 1: Detection of a Single Marker

Input: User-specific detection parameters for Marker i:
color HSV;

area A;

previous centroid C;

previous window size

If exists:

Steps:
.if C; /= None then

Center w around C;

Initialize detection window for whole frame
. end if

6. Threshold pixels according to HSV;

7. Ignore white pixels

8. Extract contours

9.C;=0

10. for each contour

1
2
3. else
4
5

11. Compute area my,

12.  Compute centroid my,

13.  ifmgy > A; then // detection

14. if m,, > C; then // finding largest centroid
15. Ci=my,

16. end if

17.  endif

18.if C; > 0 then // contour detected

19. w=25

20. return C, w

21. else // no detection in this frame
22 w=w+25 // increase detection window
23.  return None, w

24. end if

Output: C; (x,y), w

Pixels are masked based on user-defined HSV thresholds. This is
followed by contour extraction, finding continuous blobs of supra-
threshold pixels. The first raw moments are then used to calculate the
area (mge) and centroid (m,) of each contour within the window.
Marker coordinates are defined as the centroid of the contour with the
largest area. White pixels, that may be caused by bright sources, are
simply ignored. Thus, if light-emitting markers such as LEDs are used,
their intensity must be high enough to be detected, but low enough to



N. Gaspar, et al.

prevent sensor saturation. The present experiments employed Osram
PointLEDs LA P47F (red, 617nm) and LT P4SG (green, 528 nm)
1.9 mm diameter LEDs in a dark room. Each diode was driven by a 3 mA
current, emitting 210 yW (617 nm) and 48 uW (528 nm) of light. These
were assigned H value ranges of 150-10 (617 nm) and 30-80 (528 nm);
the blue (470 nm) sync LED was assigned H value range 80-100. SV
values were 60-255 for all wavelengths. By narrowing the H-band to 20
per wavelength, we have monitored up to 5 LEDs simultaneously (470,
528, 565, 590, and 633 nm), with room for additional markers in the
violet, cyan, and deep-red bands.

3.3. Determining object features

Object position (Xopjecs Yobjec) is the arithmetic mean of the linked
Markers (Fig. 1C). For a two-Marker Object, orientation 6 is the angle of
the normal vector between the markers on a 0 to 360° scale (Table 4).
For two LEDs mounted on a mouse, inter-marker distance is limited by
headstage size (e.g., 31 mm, or 7 pixels). Thus, only a finite set of or-
ientation values can be measured. To improve orientation resolution,
Markers may be placed further apart at the cost of increased headstage
size. Second order features are calculated using the empirical inter-
frame duration At. Speed I[V'll is the length of the vector pointing from
the position of the Object in the previous frame to the current one,
divided by At. Movement direction ¢ is the angle of this vector. Angular
velocity 8 is the difference between orientation in two consecutive
frames, divided by At.

3.4. Establishing frame to frame continuity

Once the coordinates of each Marker are found, they are fed into a
denoising and position estimation algorithm (Algorithm 2) based on an
adaptive Kalman filter. The algorithm combines sensor measurements
from individual Markers into the state estimation of the headstage as a
rigid-body with all six kinematic parameters (Lin et al., 2015; Moghari
and Abolmaesumi, 2007). For a two-Marker Object, we define a frame-
dependent kinematic state variable X; (a vector of 14 elements) com-
prised of instantaneous Marker positions, Object position, orientation,
and all velocities (v, and v, for each Marker and Object; angular velo-
city) in the k™ frame. The algorithm takes the best a posteriori estimate
of kinematics in the previous frame X;_; and applies a transition matrix
Fy to generate an estimate X; of the next set of measurements. F ac-
counts for the underlying physics. The next measurement m is re-
presented with a 14-element vector containing all positions and velo-
cities. The two values (estimated, X}, and measured, m) are combined
into an updated state variable X;.

To minimize false trajectories due to missing measurements, the
algorithm iterates on two branches. When at least one Marker is de-
tected, the algorithm iterates on a “stable branch” and an “estimation
branch” in parallel (see Algorithm 2). When both Markers are missing,
the algorithm continues only on the estimation branch, while the stable
branch remains frozen on the last stable state. Since the algorithm as-
sumes linear changes in position, if the Markers remain occluded for
several continuous frames, the estimation branch can deviate from ac-
curate predictions. Thus once new measurements are available, the
stable branch is revived from the last stable state, yielding an output
which is a fusion of that state with the most recent measurements. In
parallel, the estimation branch is updated to the new stable state.
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Algorithm 2: Adaptive Filtering of a two-Marker Object

Initialization:
H=1

R= [14 *10
Qo=114%0.01
X=0..0"

while frames are available
Input:  MI: (xp1, yur)
M2: (xp2, yumz)
Aty =ty —tig
Steps:

coococococofPoooOoor
coococococofPooooOoRrOo
coocococoo@PoooRr oo
coococococof@PoeorooOO
coococococofPoOroOoO0O

=

X

=
&
Lok

<
<
I

1
=

Xm2

Vmx1
VUmy1
V2 ® 1
UMka_l
onk_l
onk—l
e‘k—1

coocococoo@ProCoOo OO

0 At 0 0 0O 0O
0 0 At 000 0O
0 0 0 At 00 0O
0 0 0 0 At 0 0O
00 0 0 0 At 0O
00 0 0 0 0 At O
10 0 0 0 0 0 At
01 00O0O0O0OTO
00 10O0O0O0TO0
00010000
00 0O0T1UO0TUO0TO0
00 0O0OT1TO0TO0
000 O0O0OO0OTI1TTO
00 00 OO OO0 1

Xm1

Ym1

XMz

Ymz

Xm1tXy2
2
YM1t¥me

2

mod(ath( Oz = V) (g = le)) + 90, 360)

k-1
AM1=XM1

At
Y-y
At
Xyz=xm2" !
At
Ymz-yu* !
At
’fobj_"objk_1
At
ygbj‘Yabik_l
At
g_gk—l
At
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11 0000000000000
0 L1 000000000000
00 L2 00000000000
00 0 L2 0 0000000GO0O
0000 LI&L2 0 0 0 0 0 0 0 0 0
0000 0 LI&L2 0 0 0 0 0 0 0 0
4. I,‘l:(Ml!:Nm\e),I,2:(M2!:None)MASK:ggggggélgﬁ'zngggggg
00000000 L1 00000
000000000 L2 0000
0000000000 L2 00 0
00000000000 LI&L 0 0
) 000000000000 LI&L2 0
5.ifLlorL2 0 0000000O00O0O0O0O0 0 LI&L2
6. stableMode = True // stable branch
7. X = Fix Xieq
8. Pe= Fx Peoy =B + Qi
9. else

10. stableMode = False // estimation branch
11 K= Fix Xexn

P = Fi* Pery * Fil” + Qe
13. end if

14.5, = H* P, *H" +R

15. K = B« HT % S, 1

16. if stableMode

di = (m—Hx %)

Pie =P = (Kie » S = K,
Pey = Py

Xk = Xy + Ky * MASK * d,,
Xer = Xic

// stable branch

22. else N ” // estimation branch
Pex = P = (Kie * S * Ky )

KXere = X

25. end if

26.if L1 and L2
Qu=(1—a)* Quoy +a*Ke*dyd” * K.

28. end if

29. return X,

Output: X;

To handle cases in which only one Marker is recognized, we introduce
a MASK matrix (line 4 in Algorithm 2). If both Markers are detected, the
mask is simply the identity matrix. When a Marker is missing, all elements
that depend on that Marker are set to 0. This way we use the information

Table 4
Object feature calculations (n-Marker Object).
Feature Equation Condition
X-position L X
Xobject = -
i=1
y-position LS
Yobject = Z =
i1 "
Orientation 6 = mod(aig2((y, = y1) (2 = 1)) + 90, 360) iff (n==2)
Speed — Ok = x— D+ Ok —yk—1)?
el = —
Direction o = mod (atg2((yy — Yr_1)» Xk — Xk—1)), 360)
angular velocity 6, = O — 6k—1 iff (n==2)
At
Digital buffer ~ Voltage
divider
Digital in

B
DAC Analog buffer
SoK >
DATA >—| MCP4921
cs > Ver
5V >
0.1nF ——

$

16 KQ
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inherent to the two-marker rigid body to achieve partial fusion of the
existing measurements and estimation of the missing ones.

The state-to-sensor conversion matrix H is a 14 X 14 identity ma-
trix. Other elements denoted in Algorithm 2 including K (the Kalman
gain) and P (the state covariance matrix) are initialized as identity
matrices and updated in every frame. Since At varies between frames,
the transition matrix F, is updated every frame with the current At.

The observation (Q) and sensor error (R) covariance matrices are sen-
sitive parameters in Kalman filtering. R is initialized with a diagonal matrix
consisting of constants that were calculated from the covariance of 100
consecutive samples for 10 trials during stationary recordings. Q is in-
itialized as a diagonal matrix, and is adaptively updated in every frame
(Akhlaghi et al., 2017) with a forgetting factor a = 0.01. Since Q is cal-
culated from the difference between the measurement and the prediction,
it may change in every step, inducing noise in the position estimation.
Setting o to 1 is equivalent to the latter situation, whereas setting it to zero
is akin to using a fixed value to Q, reducing the ability of the algorithm to
adapt to fast changes in the covariance between the parameters.

The algorithm presented above handles a two-Marker Object. When
an Object is defined by only one Marker, the coordinates of the single
Marker are duplicated and used in subsequent steps as a regular two-
Marker object. Orientation and angular velocity are undefined in such
cases.

3.5. Hardware circuitry

Analog outputs are generated by communicating data from the PC
to a microcontroller (Arduino Mega) using an RS232 protocol (115,200
baud) via a USB2 port. The microcontroller in turn interfaces with the
custom MC circuit using an SPI protocol. An Arduino was chosen for
simplicity and the high number of GPIO pins, yet any microcontroller
can be used. The MC houses four 12-bit DACs and four digital channels
(Fig. 7). Each digital output is buffered through a XOR-gate and con-
verted from 5V to 3.3V level to prevent reverse current, avoid circuit
loading, and conform to modern 3.3V logic.

4. Discussion

We described a modular and flexible open-source software and
hardware system that enables real-time (28 + 3 ms delay, 100 fps)
low-noise tracking of the 2D kinematics of multiple objects. The system
was applied to the task of tracking a freely-moving rodent equipped

Analog buffer

Digital out

Low pass filter

16 KQ

< Analog out

10 nF

$

Fig. 7. Custom hardware. The Movement Controller consists of an Arduino and circuitry supporting four digital and four analog output channels. The design of each

digital (A) and analog (B) channel is shown.
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with on-head LEDs. Using two adaptive algorithms, the system main-
tained stable object tracking even when one or both LEDs were ob-
scured, and when noise and reflections were present in the field of view.
This approach eliminates the need for dedicated movement sensors in a
behavioral arena and can identify up to 2" distinct areas, n being the
number of digital outputs. Combined with electrophysiological re-
cordings, real-time calculations, and optogenetic manipulations, the
system was used for closed-loop feedback and activating pyramidal
cells according to animal location and head orientation, effectively
transforming them into synthetic place cells.

Compared to any other open source project or commercially-avail-
able system, the system provides low-noise, real-time digital and analog
outputs with high temporal resolution. A simple cross-platform GUI is
provided, offering a flexible solution compatible with low-cost elec-
tronics such as an Arduino. The presented implementation included
four digital and four analog outputs, yet the circuitry is scalable and the
number of outputs can be increased to the number of GPIO pins on the
microcontroller. By modifying the number of digital and analog out-
puts, the number of monitored ROIs and analog outputs can be in-
creased without slowing the system down.

The software, Spotter, contains several additional features that can
assist in reducing noise, improving the measurement, calibration and
documentation of an experiment. These include blind spots (masked
areas in the field of view that are therefore ignored by the algorithm),
log files, video records, and Object-specific output plots (Fig. 1D was
generated via Spotter). While the system performed best with a spe-
cialized machine vision camera, it yielded stable output with a two-
frame delay on low-cost consumer-level devices.

Stemming from physical constraints and the nature of the targeted
use-cases, several assumptions were made. The camera is assumed to be
placed above an imaged field composed of uniformly colored, non-re-
flective material, which is completely open from above. The size, shape,
and contour of the color markers, as well as inter-marker distance, limit
spatial resolution. Markers must have different colors to be recognized
as distinct. In small environments such as the 2x2m arena used here,
optical distortions are negligible (Fig. 3) and can be ignored. However,
when tracking animals in large environments, distortions must be
compensated for, and/or multiple cameras should be used (Saxena
et al., 2018; Sourioux et al., 2018).

A natural next step is to turn the system into a standalone device,
removing the need for a PC. This can be done using a USB 3.0 com-
patible microcontroller with strong processing capabilities. A PC may
still be used for user interface. Another possible extension would be to
replace visible with IR LEDs. This could utilize an OpenCV-compatible
thermal camera and IR LEDs with distinct wavelengths. A third possible
future direction is to allow defining custom functions on the kinematic
variables before routing them to analog/digital output. For example,
the distance of the mouse from a given location (Fig. 6) could be
computed by the tracking system itself, or the system could output the
uncertainty in the estimate of any variable (calculated from the state
covariance matrix P in Algorithm 2). Finally, presently only planar ki-
nematics (3 degrees of freedom: x, y, and yaw) are monitored. The
system can be extended to track the full 3D orientation (roll, pitch, and
yaw) of an object moving in 2D using a headstage with three markers
arranged as a triangle perpendicular to the plane of movement.
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